
Lund University / EITF20/ Liang Liu

EITF20: Computer Architecture
Part2.2.1: Pipeline-1

Liang Liu

liang.liu@eit.lth.se

1

Lund University / EITF20/ Liang Liu

Previous lecture

 Instruction set architecture

2

Lund University / EITF20/ Liang Liu

ISA Classification

3

Where are operands stored?

• registers, memory, stack, accumulator

How many explicit operands are there?

• 0, 1, 2, or 3

How is the operand location specified?

• register, immediate, indirect, . . .

What type & size of operands are supported?

• byte, int, float, double, string, vector. . .

What operations are supported?

• add, sub, mul, move, compare . . .

How is the operation flow controlled?
• branches, jumps, procedure calls . . .

What is the encoding format
• fixed, variable, hybrid...

Lund University / EITF20/ Liang Liu

What affects the computer architecture?

4

Applications

Lund University / EITF20/ Liang Liu

ISA Classification

5

What’s needed in an instruction set?

• Addressing

• Operands

• Operations

• Control Flow

Lund University / EITF20/ Liang Liu

Types of control instructions

6

Conditional branches

Unconditional branches (jumps)

Procedure call/returns

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

 Instruction Set Principles

 The Role of Compilers

MIPS

7

Lund University / EITF20/ Liang Liu

The MIPS64 architecture

8

 An architecture representative of modern ISA:

• 64-bit load/store GPR architecture

• 32 general integer registers (R0 = 0) and 32 floating point registers

• Supported data types: bytes, half word (16 bits), word (32 bits),

double word (64 bits), single and double precision IEEE floating

points

• Memory byte addressable with 64-bit addresses

• Addressing modes: immediate and displacement

Lund University / EITF20/ Liang Liu

MIPS instruction example

9

Lund University / EITF20/ Liang Liu

Outline

 Pipelining

 Harzards

• Structural hazards

• Data hazards

• Control hazards

 Implementation issues

Multi-cycle operations

 Summary

10

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

 Pipelining

 Harzards

• Structural hazards

• Data hazards

• Control hazards

 Implementation issues

Multi-cycle operations

 Summary

11

Lund University / EITF20/ Liang Liu

The Assembly Line ...

12

Lund University / EITF20/ Liang Liu

Start again from laundry room

Small laundry has one washer, one dryer and one folder, it

takes 110 minutes to finish one load:

•Washer takes 40 minutes

•Dryer takes 50 minutes

•“Folding” takes 20 minutes

Need to do 4 laundries

The general pipeline principle

13

Lund University / EITF20/ Liang Liu

Not very smart way...

40 50 20 40 50 20 40 50 20 40 50 20

L
a
u

n
d

rie
s

Time

110 min

1

2

3

4

Total = N*(Washer+ Dryer+Folder)

= ___________ mins440

14

Lund University / EITF20/ Liang Liu

If we pipelining

Time

40 50 50 50 50 20

L
a
u

n
d

rie
s

1

2

3

4

Total = Washer+N*Max(Washer,Dryer,Folder)+Folder

= ___________ mins260

The washer

waits for the

dryer for 10

minutes

15

Lund University / EITF20/ Liang Liu

Pipeline Facts

Time

40 50 50 50 50 20

L
a

u
n

d
rie

s

1

2

3

4

Multiple (independent) tasks

operating simultaneously

Pipelining doesn’t help latency

of single task, it helps

throughput of entire workload

Pipeline rate limited by

slowest pipeline stage

Unbalanced lengths of pipe

stages reduces speedup

Potential speedup ∝ Number

of pipe stages

16

Lund University / EITF20/ Liang Liu

One core – the MIPS data-path

20

Lund University / EITF20/ Liang Liu

Classic RISC 5-stage pipeline

21

Instruction Fetch (IF):
• Send out the PC and fetch the instruction from memory into the instruction

register (IR); increment the PC by 4 to address the next sequential instruction.

• IR (reg) holds the instruction that will be used in the next stage.

• NPC (reg) holds the value of the next PC (either sequential or jump).

Passed To Next Stage

IR <- Mem[PC]

NPC <- PC + 4

Lund University / EITF20/ Liang Liu

Classic RISC 5-stage pipeline

22

Instruction Decode/Register Fetch Cycle (ID):
• Decode the instruction and access the register file to read the registers.

• The outputs of the general-purpose registers are read into two temporary

registers (A & B) for use in later clock cycles.

• Extend the sign of the lower 16 bits of the Instruction Register (immediate).

Passed To Next Stage

A <- Regs[IR6..IR10];

B <- Regs[IR10..IR15];

Imm <- ((IR16) ##IR16-31

Lund University / EITF20/ Liang Liu

Classic RISC 5-stage pipeline

23

Passed To Next Stage

A <- A func. B

cond = 0;

Execute Address Calculation (EX):
• Perform an operation (for an ALU) or an address calculation (if it’s a load/store

or a Branch).

• If an ALU, do the operation.

• If a (memory) address calculation, figure out how to obtain the address

• Branch decision

Lund University / EITF20/ Liang Liu

Classic RISC 5-stage pipeline

24

Passed To Next Stage

A = Mem[prev. B]

or

Mem[prev. B] = A

MEMORY ACCESS (MEM):
• If this is an ALU, do nothing.

• If a load or store, then access memory.

Lund University / EITF20/ Liang Liu

Classic RISC 5-stage pipeline

25

Passed To Next Stage

Regs <- A, B;

WRITE BACK (WB):
• Update the registers (GPR) from either the ALU or from the data loaded.

Lund University / EITF20/ Liang Liu

Speed up

28

Non-Pipelined
0 200 400 600 800 1000 1200 1400 1600 1800

lw $1, 100($0)
Instruction

Fetch
REG

RD
ALU REG

WR
MEM

lw $2, 200($0)
Instruction

Fetch
REG

RD
ALU REG

WR
MEM

lw $3, 300($0)
Instruction

Fetch

Time
Instruction
Order

800ps

800ps

800ps

Pipelined
0 200 400 600 800 1000 1200 1400 1600

lw $1, 100($0)
Instruction

Fetch
REG

RD
ALU REG

WR
MEM

lw $2, 200($0)

lw $3, 300($0)

Time
Instruction
Order

200ps

Instruction

Fetch
REG

RD
ALU REG

WR
MEM

Instruction

Fetch
REG

RD
ALU REG

WR
MEM

200ps

200ps 200ps 200ps 200ps 200ps

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

 Pipelining

 Harzards

• Structural hazards

• Data hazards

• Control hazards

 Implementation issues

Multi-cycle operations

 Summary

31

Lund University / EITF20/ Liang Liu

Fundamental limitations

32

Hazards can prevent next instruction from executing

during its designated clock cycle:

• Structural hazards: Simultaneous use of a HW resource

• Data hazards: Data dependencies between instructions

• Control hazards: Change in program flow

Lund University / EITF20/ Liang Liu

Structure hazard

33

When two or more different instructions want to use same hardware

resource in same cycle, e.g., MEM uses the same memory port (only one

memory port)

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L
U

DMemIfetch Reg

Lund University / EITF20/ Liang Liu

A simple solution

34

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L
U

DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

Lund University / EITF20/ Liang Liu

Other solutions

35

Stall

• low cost, simple

• Increases CPI

• use for rare case since stalling has performance effect

Pipeline hardware resource

• useful for multi-cycle resources

• good performance

• sometimes complex

Replicate resource

• good performance

• increases cost (+ maybe interconnect delay)

• useful for cheap resources

Lund University / EITF20/ Liang Liu

Memory Architecture

36

w
o

rd
 l
in

e

storage

(RAM) cell

Lund University / EITF20/ Liang Liu

Dual/single port memory (65nm)

37

Size Single-port Dual-port

64*16 12um2/bit 23um2/bit

256*16 4.6um2/bit 8um2/bit

512*16 4um2/bit 6um2/bit

Lund University / EITF20/ Liang Liu

Data hazard

38

The use of the result of the ADD instruction in the next 3 instructions

causes a hazard, since the register is not written until after those

instructions read it.

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Time (clock cycles)

IF ID/RF EX MEM WB

Lund University / EITF20/ Liang Liu

Fundamental types of data hazard

39

RAW (Read-After-Write)

• Instruction i + 1 reads A and i modifies A

• Instruction i+1 reads old A!

WAR (Write-After-Read)

• Instruction i + 1 modifies A and instruction i reads new A

WAW (Write-After-Write)

• Instructions i and i + 1 both modifies A

• The value in A is the one written by instruction i

(RAR?)

Lund University / EITF20/ Liang Liu

Strategies for data hazard

40

Interlock

• Wait for hazard to clear by holding dependent instruction in

issue stage

Forwarding

• Resolve hazard earlier by bypassing value as soon as

available

Lund University / EITF20/ Liang Liu

Interlock and forwarding

41

add x1, x3, x5

sub x2, x1, x4

F add x1, x3, x5D

F

X

D

F

sub x2, x1, x4

W

M

X bubble

F

D

W

X M W

M W

W

M

D

X bubble

M

X bubble

D

F

Instruction interlocked in

decode stage

F D X M W add x1, x3, x5

F D X M W sub x2, x1, x4

Bypass around ALU with

no bubbles

Lund University / EITF20/ Liang Liu

Hardware support of forwarding

42

MemoryEXecuteDecodeFetch

R
e

gi
st

e
rs

A
LU

B
A

Data
Cache

P
C

Instruction
Cache

St
o

re

Im
m

In
st

. R
e

gi
st

e
r

Writeback

Lund University / EITF20/ Liang Liu

Data hazard with forwarding

43

Required date from MEM

Lund University / EITF20/ Liang Liu

Data hazard with forwarding

44

Lund University / EITF20/ Liang Liu

Software scheduling of load

45

Try producing fast code for

a = b + c;

d = e - f;

assuming a, b, c, d, e, and f are

in memory

LD R1, B

LD R2, C

DADD R3,R1,R2

SD R3, A

LD R5, F

LD R4, E

DSUB R6,R4,R5

SD R6, D

How many stalls?

How many stalls with hardware forwarding?

F D

F

X

D

F

W

M

X

F

D

W

X M W

M W

W

M

D

X

M

X

D

F

Lund University / EITF20/ Liang Liu

Software scheduling of load

46

Try producing fast code for

a = b + c;

d = e - f;

assuming a, b, c, d, e, and f are in memory.

Architecture dependent optimization

Lund University / EITF20/ Liang Liu

Control hazard

48

Control hazard

• Need to find the destination of a branch, and can’t fetch any new

instructions until we know that destination

Assume: branches are not resolved until the MEM stage

Three wasted clock cycles:

• two stalls

• one extra instruction fetch (IF)

 If branch is not taken, the extra IF is not needed

Lund University / EITF20/ Liang Liu

Hardware support to reduce control hazard

49

Calculate target address and test condition in ID

1 clock cycle branch penalty instead of 3!

Lund University / EITF20/ Liang Liu

Four control hazard alternatives

50

Stall until branch condition and target is known

Predict branch not taken

• Execute successor instructions in sequence

• “Squash” instructions in pipeline if the branch is actually taken

• Works well if state is updated (WRITE) late in the pipeline

• 33 % MIPS conditional branches not taken on average

one cycle penalty if taken

Lund University / EITF20/ Liang Liu

Four control hazard alternatives

51

Predict Branch taken (benefit in our case?)

• 67 % MIPS conditional branches taken on average

• MIPS calculates target address in ID stage! Still one cycle penalty

Delayed branch

• Schedule independent instruction to be exe after the Branch to fill

the one-cycle gap

Lund University / EITF20/ Liang Liu

Compiler support for delay branch

52

Scheduling “from before” is safe (if independent)

Scheduling “from target” or “fall through” is not always safe

Lund University / EITF20/ Liang Liu

Pipeline speed up

53

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

 Pipelining

 Harzards

• Structural hazards

• Data hazards

• Control hazards

 Implementation issues

Multi-cycle operations

 Summary

54

Lund University / EITF20/ Liang Liu

What’s hard to implement

55

Exceptions (fault, interrupt)

Lund University / EITF20/ Liang Liu

Exceptions

56

When an interrupt occurs:

• How to stop the pipeline?

• How to restart the pipeline?

• Who caused the interrupt?

A pipeline implements precise exceptions if:

• All instructions before the faulting instruction can complete

• All instructions after (and including) the faulting instruction can

safely be restarted

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow
Data address
Exceptions

PC address
Exception

Lund University / EITF20/ Liang Liu

Exceptions are difficult in pipeline

57

We need to be able to restart an instruction that

causes an exception:

• Force a trap instruction (e.g., some special routine call to

handle the exception) into the pipeline

• Turn off all writes for the faulting instruction

• Save the PC for the faulting instruction to be used in return

from exception handling

Lund University / EITF20/ Liang Liu

Solution for simple MIPS

58

Need to add control and data-paths to support exceptions

and interrupts.

When an exception or interrupt occurs, the following must be

done:

• EPC <= PC

• Cause <= (cause code for event)

• Status <= (fault)

• PC <= (handler address)

To return from an exception or datapath, the following must

be done:

• PC <= EPC

• Status <= (fault clear)

Lund University / EITF20/ Liang Liu

Exceptions are difficult in pipeline

59

Exceptions may be generated out-of-(program) order

Lund University / EITF20/ Liang Liu

Solution for simple MIPS

60

Add a hardware status vector containing exceptions

Pass along with instruction in the pipeline

• Hold exception flags in pipeline until commit point

Turn of writes when an exception entered in the status vector

Handle exceptions from status vector in WB (in program order)

• If exception at commit: update Cause and EPC registers, kill all stages,

inject handler PC into fetch stage

Handle at commit point NOT

at exception point

Lund University / EITF20/ Liang Liu

Solution for simple MIPS

61

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchrono
us

Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se
EP

C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

F D X M W

F D X M W

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

 Pipelining

 Harzards

• Structural hazards

• Data hazards

• Control hazards

 Implementation issues

Multi-cycle operations

 Summary

62

Lund University / EITF20/ Liang Liu

Multi-cycle instruction in pipeline (FP)

63

FP Instruction Latency Initiation Rate

Add, Subtract 3 1

Multiply 6 1

Divide 24 25

Lund University / EITF20/ Liang Liu

Parallelism between integer and FP

64

Instructions are issued in order

Instructions may be completed out of order

Lund University / EITF20/ Liang Liu

Pipeline hazard

65

Structural hazards

RAW hazards

WAW harzards

WAR hazards

Lund University / EITF20/ Liang Liu

Pipeline hazard

66

Structural hazards. Stall in ID stage if:

• The functional unit is occupied (applicable to DIV only)

• Any instruction already executing will reach the MEM/WB stage at the

same time as this one

RAW hazards:

• Normal bypassing from MEM and WB stages

• Stall in ID stage if any of the source operands is destination operand in

any of the FP functional units

Lund University / EITF20/ Liang Liu

Pipeline hazard

67

WAR hazards?

• There are no WAR-hazards since the operands are read (in ID) before

the EX-stages in the pipeline, they are in-order

WAW hazard

• SUB finishes before DIV which will overwrite the result from SUB!

• are eliminated by stalling SUB until DIV reaches MEM stage

• When WAW hazard is a problem?

How about exception?

Lund University / EITF20/ Liang Liu

Exception

68

Suppose

• the SUB instruction generates an arithmetic trap

• DIV instruction hasn’t completed

• ADD instruction have completed

Imprecise interrupt signaling: Another problem

with out-of-order completion

Lund University / EITF20/ Liang Liu

Summary

69

 Pipelining (ILP):

• Speeds up throughput, not latency

• Speedup ≤ #stages

 Hazards limit performance, generate stalls:

• Structural: need more HW

• Data (RAW,WAR,WAW): need forwarding and compiler scheduling

• Control: delayed branch, branch prediction

 Complications:

• Precise exceptions may be difficult to implement

