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Previous lecture

 Instruction set architecture
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ISA Classification
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Where are operands stored?

• registers, memory, stack, accumulator

How many explicit operands are there?     

• 0, 1,  2,  or 3 

How is the operand location specified?

• register, immediate, indirect, . . . 

What type & size of operands are supported?

• byte, int, float, double, string, vector. . .

What operations are supported?

• add, sub, mul, move, compare . . .

How is the operation flow controlled?
• branches, jumps, procedure calls . . .

What is the encoding format
• fixed, variable, hybrid...
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What affects the computer architecture?
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Applications
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ISA Classification
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What’s needed in an instruction set?

• Addressing

• Operands

• Operations

• Control Flow
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Types of control instructions
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Conditional branches

Unconditional branches (jumps)

Procedure call/returns
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Outline

 Reiteration

 Instruction Set Principles

 The Role of Compilers

MIPS
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The MIPS64 architecture
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 An architecture representative of modern ISA:

• 64-bit load/store GPR architecture

• 32 general integer registers (R0 = 0) and 32 floating point registers

• Supported data types: bytes, half word (16 bits), word (32 bits), 

double word (64 bits), single and double precision IEEE floating 

points

• Memory byte addressable with 64-bit addresses

• Addressing modes: immediate and displacement
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MIPS instruction example
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Outline

 Pipelining

 Harzards

• Structural hazards

• Data hazards

• Control hazards

 Implementation issues

Multi-cycle operations

 Summary

10



Lund University / EITF20/ Liang Liu

Outline

 Reiteration

 Pipelining

 Harzards

• Structural hazards

• Data hazards

• Control hazards

 Implementation issues

Multi-cycle operations

 Summary

11



Lund University / EITF20/ Liang Liu

The Assembly Line ...
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Start again from laundry room

Small laundry has one washer, one dryer and one folder, it 

takes 110 minutes to finish one load:

•Washer takes 40 minutes

•Dryer takes 50 minutes

•“Folding” takes 20 minutes

Need to do 4 laundries

The general pipeline principle

13
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Not very smart way...
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If we pipelining

Time
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Pipeline Facts
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Multiple (independent) tasks 

operating simultaneously

Pipelining doesn’t help latency

of single task, it helps 

throughput of entire workload

Pipeline rate limited by 

slowest pipeline stage

Unbalanced lengths of pipe 

stages reduces speedup

Potential speedup ∝ Number 

of pipe stages
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One core – the MIPS data-path
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Classic RISC 5-stage pipeline
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Instruction Fetch (IF):
• Send out the PC and fetch the instruction from memory into the instruction 

register (IR); increment the PC by 4 to address the next sequential instruction.

• IR (reg) holds the instruction that will be used in the next stage.

• NPC (reg) holds the value of the next PC (either sequential or jump).

Passed To Next Stage

IR <- Mem[PC]

NPC <- PC + 4
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Classic RISC 5-stage pipeline
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Instruction Decode/Register Fetch Cycle (ID):
• Decode the instruction and access the register file to read the registers.

• The outputs of the general-purpose registers are read into two temporary 

registers (A & B) for use in later clock cycles.

• Extend the sign of the lower 16 bits of the Instruction Register (immediate).

Passed To Next Stage

A <- Regs[IR6..IR10];

B <- Regs[IR10..IR15];

Imm <- ((IR16) ##IR16-31
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Classic RISC 5-stage pipeline
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Passed To Next Stage

A <- A func. B

cond = 0;

Execute Address Calculation (EX):
• Perform an operation (for an ALU) or an address calculation (if it’s a load/store 

or a Branch).

• If an ALU, do the operation.  

• If a (memory) address calculation, figure out how to obtain the address

• Branch decision
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Classic RISC 5-stage pipeline
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Passed To Next Stage

A = Mem[prev. B]

or

Mem[prev. B] = A

MEMORY ACCESS (MEM):
• If this is an ALU, do nothing.

• If a load or store, then access memory.
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Classic RISC 5-stage pipeline
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Passed To Next Stage

Regs <- A, B;

WRITE BACK (WB):
• Update the registers (GPR) from either the ALU or from the data loaded.



Lund University / EITF20/ Liang Liu

Speed up
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Fundamental limitations
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Hazards can prevent next instruction from executing 

during its designated clock cycle:

• Structural hazards: Simultaneous use of a HW resource

• Data hazards: Data dependencies between instructions

• Control hazards: Change in program flow
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Structure hazard

33

When two or more different instructions want to use same hardware

resource in same cycle, e.g., MEM uses the same memory port (only one

memory port)
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A simple solution

34
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Other solutions

35

Stall

• low cost, simple 

• Increases CPI  

• use for rare case since stalling has performance effect

Pipeline hardware resource

• useful for multi-cycle resources 

• good performance 

• sometimes complex

Replicate resource

• good performance 

• increases cost (+ maybe interconnect delay) 

• useful for cheap resources 
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Memory Architecture

36
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Dual/single port memory (65nm)
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Size Single-port Dual-port

64*16 12um2/bit 23um2/bit

256*16 4.6um2/bit 8um2/bit

512*16 4um2/bit 6um2/bit
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Data hazard
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The use of the result of the ADD instruction in the next 3 instructions 

causes a hazard, since the register is not written until after those 

instructions read it.
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Fundamental types of data hazard
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RAW (Read-After-Write)

• Instruction i + 1 reads A and i modifies A 

• Instruction i+1 reads old A!

WAR (Write-After-Read) 

• Instruction i + 1 modifies A and instruction i reads new A

WAW (Write-After-Write) 

• Instructions i and i + 1 both modifies A

• The value in A is the one written by instruction i

(RAR?)
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Strategies for data hazard
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Interlock

• Wait for hazard to clear by holding dependent instruction in 

issue stage

Forwarding

• Resolve hazard earlier by bypassing value as soon as 

available
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Interlock and forwarding
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Hardware support of forwarding
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Data hazard with forwarding

43

Required date from MEM
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Data hazard with forwarding

44
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Software scheduling of load
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Try producing fast code for

a = b + c;

d = e - f;

assuming a, b, c, d, e, and f are 

in memory
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Software scheduling of load
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Try producing fast code for

a = b + c;

d = e - f;

assuming a, b, c, d, e, and f are in memory.

Architecture dependent optimization
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Control hazard

48

Control hazard

• Need to find the destination of a branch, and can’t fetch any new 

instructions until we know that destination

Assume: branches are not resolved until the MEM stage

Three wasted clock cycles:

• two stalls

• one extra instruction fetch (IF)

 If branch is not taken, the extra IF is not needed
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Hardware support to reduce control hazard

49

Calculate target address and test condition in ID

1 clock cycle branch penalty instead of 3!
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Four control hazard alternatives
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Stall until branch condition and target is known

Predict branch not taken

• Execute successor instructions in sequence

• “Squash” instructions in pipeline if the branch is actually taken

• Works well if state is updated (WRITE) late in the pipeline

• 33 % MIPS conditional branches not taken on average

one cycle penalty if taken
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Four control hazard alternatives

51

Predict Branch taken (benefit in our case?)

• 67 % MIPS conditional branches taken on average

• MIPS calculates target address in ID stage! Still one cycle penalty

Delayed branch

• Schedule independent instruction to be exe after the Branch to fill 

the one-cycle gap
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Compiler support for delay branch
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Scheduling “from before” is safe (if independent)

Scheduling “from target” or “fall through” is not always safe
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Pipeline speed up
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What’s hard to implement

55

Exceptions (fault, interrupt)
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Exceptions
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When an interrupt occurs:

• How to stop the pipeline?

• How to restart the pipeline?

• Who caused the interrupt? 

A pipeline implements precise exceptions if:

• All instructions before the faulting instruction can complete

• All instructions after (and including) the faulting instruction can 

safely be restarted

PC
Inst. 
Mem D Decode E M

Data 
Mem W+

Illegal 
Opcode

Overflow
Data address 
Exceptions

PC address 
Exception
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Exceptions are difficult in pipeline

57

We need to be able to restart an instruction that 

causes an exception:

• Force a trap instruction (e.g., some special routine call to 

handle the exception) into the pipeline

• Turn off all writes for the faulting instruction

• Save the PC for the faulting instruction to be used in return 

from exception handling
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Solution for simple MIPS

58

Need to add control and data-paths to support exceptions 

and interrupts. 

When an exception or interrupt occurs, the following must be 

done:

• EPC <= PC

• Cause <= (cause code for event)

• Status <= (fault)

• PC <= (handler address)

To return from an exception or datapath, the following must 

be done:

• PC <= EPC

• Status <= (fault clear)
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Exceptions are difficult in pipeline

59

Exceptions may be generated out-of-(program) order
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Solution for simple MIPS
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Add a hardware status vector containing exceptions

Pass along with instruction in the pipeline

• Hold exception flags in pipeline until commit point 

Turn of writes when an exception entered in the status vector

Handle exceptions from status vector in WB (in program order)

• If exception at commit: update Cause and EPC registers, kill all stages, 

inject handler PC into fetch stage

Handle at commit point NOT 

at exception point
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Solution for simple MIPS

61

PC
Inst. 
Mem D Decode E M

Data 
Mem W+

Illegal 
Opcode

Overflow Data address 
Exceptions

PC address 
Exception

Asynchrono
us

Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se
EP

C

Kill D 
Stage

Kill F 
Stage

Kill E 
Stage

Select 
Handler 
PC

Kill 
Writeback

F D X M W

F D X M W



Lund University / EITF20/ Liang Liu

Outline

 Reiteration

 Pipelining

 Harzards

• Structural hazards

• Data hazards

• Control hazards

 Implementation issues

Multi-cycle operations

 Summary

62



Lund University / EITF20/ Liang Liu

Multi-cycle instruction in pipeline (FP)

63

FP Instruction Latency Initiation Rate 

Add, Subtract 3 1

Multiply 6 1

Divide 24 25
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Parallelism between integer and FP
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Instructions are issued in order

Instructions may be completed out of order
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Pipeline hazard
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Structural hazards

RAW hazards

WAW harzards

WAR hazards



Lund University / EITF20/ Liang Liu

Pipeline hazard
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Structural hazards. Stall in ID stage if:

• The functional unit is occupied (applicable to DIV only)

• Any instruction already executing will reach the MEM/WB stage at the 

same time as this one

RAW hazards:

• Normal bypassing from MEM and WB stages

• Stall in ID stage if any of the source operands is destination operand in 

any of the FP functional units
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Pipeline hazard

67

WAR hazards?

• There are no WAR-hazards since the operands are read (in ID) before 

the EX-stages in the pipeline, they are in-order

WAW hazard

• SUB finishes before DIV which will overwrite the result from SUB!

• are eliminated by stalling SUB until DIV reaches MEM stage

• When WAW hazard is a problem?

How about exception?
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Exception

68

Suppose

• the SUB instruction generates an arithmetic trap

• DIV instruction hasn’t completed

• ADD instruction have completed

Imprecise interrupt signaling: Another problem 

with out-of-order completion
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Summary

69

 Pipelining (ILP):

• Speeds up throughput, not latency

• Speedup ≤ #stages

 Hazards limit performance, generate stalls:

• Structural: need more HW

• Data (RAW,WAR,WAW): need forwarding and compiler scheduling

• Control: delayed branch, branch prediction

 Complications:

• Precise exceptions may be difficult to implement


