
Lund University / EITF20/ Liang Liu

EITF20: Computer Architecture
Part 2.1.1: Instruction Set Architecture

Liang Liu

liang.liu@eit.lth.se

1

Lund University / EITF20/ Liang Liu

ISA: Instruction-set architecture

Computer orginization: micro architecture

Specific implementation

Computer architecture

2

Computer architecture is a set of disciplines that

describe the functionality, organization and

implementation of computer systems.

Lund University / EITF20/ Liang Liu

Outline

 Computers

 Computer Architecture

 This Course

 Trends

 Performance

Quantitative Principles

3

Lund University / EITF20/ Liang Liu

What is Performance?

4

Time to complete a task (Texe)

• Execution time, response time, latency

Task per day, hour…

• Total amount of tasks for given time

• Thoughput, bandwidth

Speed of Concorde vs Boeing 747

Throughput of Boeing 747 vs Concorde

Lund University / EITF20/ Liang Liu

Performance

5

How to define execution time?

Lund University / EITF20/ Liang Liu

Aspect of CPU performance

6

Lund University / EITF20/ Liang Liu

Instructions are not created equally

7

Lund University / EITF20/ Liang Liu

Average CPI: example

8

Invest resources where time is spent!

Lund University / EITF20/ Liang Liu

Outline

 Computers

 Computer Architecture

 This Course

 Trends

 Performance

Quantitative Principles

9

Lund University / EITF20/ Liang Liu

Quantitative Principles

10

This is intro to design and analysis

• Take advantage of parallelism

❑ ILP, DLP, TLP, ...

• Principle of locality

❑ 90% of execution time in only 10% of the code

• Focus on the common case

❑ In making a design trade-off, favor the frequent case ove the

infrequent case

• Amdahl’s Law

❑ The performance improvement gained from uisng faster mode is

limited by the fraction of the time the faster mode can be used

• The Processor Performance Equation

Lund University / EITF20/ Liang Liu

Amdahl’s Law

11

Best you could ever hope to do:

()enhanced
maximum Fraction - 1

1
 Speedup =

Lund University / EITF20/ Liang Liu

Amdahl’s Law: example

12

New CPU is 10 times faster!

60% for I/O which remains almost the same…

()

()
56.1

64.0

1

10

0.4
 0.4 1

1

Speedup

Fraction
 Fraction 1

1
 Speedup

enhanced

enhanced
enhanced

overall

==

+−

=

+−

=

Apparently, its human nature to be attracted by 10X

faster, vs. keeping in perspective its just 1.6X faster

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

 Instruction Set Principles

 The Role of Compilers

MIPS

14

Lund University / EITF20/ Liang Liu

Instruction Set

15

Serves as an interface between software and

hardware

Provides a mechanism by which the software tells

the hardware what should be done

Basic functionality that hardware can provide to

software

instruction set

High level language code : C, C++, Java, Fortran,

hardware

Assembly language code: architecture specific statements

Machine language code: architecture specific bit patterns

software

compiler

assembler

Lund University / EITF20/ Liang Liu

Interface Design

16

A good interface?

Lund University / EITF20/ Liang Liu

Interface Design

17

A good interface

• Lasts through many implementations (portability, compatibility)

• Can be used in many ways (generality)

• Provides sufficient functionality to higher levels

• Permits an efficient implementation at lower levels

• …

Interface
imp 1

imp 2

imp 3

use

use

use

Lund University / EITF20/ Liang Liu

ISA Classification

18

What’s needed in an instruction set?

• Addressing

• Operands

• Operations

• Control Flow

Lund University / EITF20/ Liang Liu

ISA Classification

19

Where are operands stored?

• registers, memory, stack, accumulator

How many explicit operands are there?

• 0, 1, 2, or 3

How is the operand location specified?

• register, immediate, indirect, . . .

What type & size of operands are supported?

• byte, int, float, double, string, vector. . .

What operations are supported?

• add, sub, mul, move, compare . . .

How is the operation flow controlled?
• branches, jumps, procedure calls . . .

What is the encoding format
• fixed, variable, hybrid...

Lund University / EITF20/ Liang Liu

ISA Classes: Where are operands stored

20

before 19601960s to 1970s 1970s to present 1960s to present

Lund University / EITF20/ Liang Liu

Example: C=A+B

21

Stack Accumulator Register

(register-memory)

Register (load-
store)

Push A

Push B

Add

Pop C

Load A

Add B

Store C

Load R1, A

Add R1, B

Store C, R1

Load R1, A

Load R2, B

Add R3, R1, R2

Store C, R3

memory memory
acc = acc + mem[B] R1 = R1 + mem[B] R3 = R1 + R2

Lund University / EITF20/ Liang Liu

GPR (General Purpose Register)

24

Registers are much faster than memory (even cache)

• Register values are available “immediately”

• When memory isn’t ready, processor must wait (“stall”)

Registers are convenient for variable storage

• Compiler assigns some variables (especially frequently used

ones) just to registers

• More compact instr. since small fields specify registers

(compared to memory addresses)

Disadvantages

• Higher instruction count (load/store)

• Dependent on good compiler (Reg. assignment)

• Higher hardware cost (comparing to MEM)

Lund University / EITF20/ Liang Liu

Register, SRAM, DRAM

25

Register (DFF) Cell (16T)

DRAM Cell (1T)SRAM Cell (6T)

Lund University / EITF20/ Liang Liu

Memory Architecture

26

w
o

rd
 l
in

e

storage

(RAM) cell

Lund University / EITF20/ Liang Liu

Reg v.s. Mem (65nm CMOS)

27

Register Bank Memory

Size 256*4Byte 1K*4Byte

Area 0.14mm2 0.04mm2

Density 7KB/mm2 100KB/mm2

Lund University / EITF20/ Liang Liu

Example: RISC-CICS

28

MULT 2:3, 5:2 LOAD A, 2:3

LOAD B, 5:2

PROD A, B

STORE 2:3, A

CISC RISC

Emphasis on hardware Emphasis on software

Includes multi-clock
complex instructions

“Single”-clock,
reduced instruction only

Memory-to-memory:
"LOAD" and "STORE"
incorporated in
instructions

Register to register:
"LOAD" and "STORE"
are independent
instructions

Small code sizes
Less memory access
(instr.)

large code sizes

Irregular Instruction size Regular Instruction size

Lund University / EITF20/ Liang Liu

Example: RISC-CICS

29

Lund University / EITF20/ Liang Liu

IoT Processor?

30

Stack Accumulator Register

(register-memory)

Register (load-
store)

Push A

Push B

Add

Pop C

Load A

Add B

Store C

Load R1, A

Add R1, B

Store C, R1

Load R1, A

Load R2, B

Add R3, R1, R2

Store C, R3

memory memory
acc = acc + mem[B] R1 = R1 + mem[B] R3 = R1 + R2

?
 Advantages

• Very compact object code →

small memory

• Simple compilers (no reg.

assignment)

• Fast operand access (no

addressing)

→ More efficient instruction

• Minimal processor state

→ simple hardware, e.g.,

instruction decoder

Lund University / EITF20/ Liang Liu

Memory Addressing

32

A 32-bit (4Byte) integer variable (0x01234567) stored at

address 0x100

• Big Endian

❑Least significant byte has highest address

• Little Endian

❑Least significant byte has lowest address

• Important for exchange of data

0x100 0x101 0x102 0x103

01 23 45 6701 23 45 67

0x100 0x101 0x102 0x103

67 45 23 0167 45 23 01

Lund University / EITF20/ Liang Liu

Memory Addressing

33

Memory is generally byte addressed and provides

access for

• bytes (8 bits), half words (16 bits), words (32 bits), and double

words(64 bits)

An architecture may require that data is aligned:

• Address index is multiple of date type size (depending on

memory implementation)

Lund University / EITF20/ Liang Liu

Memory Addressing Mode

37

Addressing Mode Example Action

1. Register direct Add R4, R3 R4 <- R4 + R3

2. Immediate Add R4, #3 R4 <- R4 + 3

3. Displacement Add R4, 100(R1) R4 <- R4 + M[100 + R1]

4. Register indirect Add R4, (R1) R4 <- R4 + M[R1]

5. Indexed Add R4, (R1 + R2) R4 <- R4 + M[R1 + R2]

6. Direct Add R4, (1000) R4 <- R4 + M[1000]

7. Memory Indirect Add R4, @(R3) R4 <- R4 + M[M[R3]]

8. Auto-increment Add R4, (R2)+ R4 <- R4 + M[R2]

R2 <- R2 + d

9. Auto-decrement Add R4, (R2)- R4 <- R4 + M[R2]

R2 <- R2 - d

10. Scaled Add R4, 100(R2)[R3] R4 <- R4 +

M[100 + R2 + R3*d]

Lund University / EITF20/ Liang Liu

ISA Classification

42

What’s needed in an instruction set?

• Addressing

• Operands

• Operations

• Control Flow

Lund University / EITF20/ Liang Liu

What does it mean?

43

Lund University / EITF20/ Liang Liu

What does it mean?

44

Lund University / EITF20/ Liang Liu

Types and sizes of operands

45

integer

floating point (single precision)

character

packed decimal

... etc ...

Lund University / EITF20/ Liang Liu

Floating point v.s. fixed point

47

Lund University / EITF20/ Liang Liu

Two basic components

48

Operands (Data type)

Operations

Check what is in the ISA!

0101010111100

signed/unsigned

binary

floating-point 7-segment

+/-

Lund University / EITF20/ Liang Liu

ISA Classification

49

What’s needed in an instruction set?

• Addressing

• Operands

• Operations

• Control Flow

Lund University / EITF20/ Liang Liu

Types of operations

50

• Arithmetic and Logic: AND, ADD

• Data Transfer: MOVE, LOAD, STORE

• Control BRANCH, JUMP, CALL

• System OS CALL,

• Floating Point ADDF, MULF, DIVF

• Decimal ADDD, CONVERT

• String MOVE, COMPARE, SEARCH

• Graphics (DE)COMPRESS

Lund University / EITF20/ Liang Liu

Types of operations (frequency)

51

Rank Instruction Frequency

1 load 22%

2 branch 20%

3 compare 16%

4 store 12%

5 add 8%

6 and 6%

7 sub 5%

8 register move 4%
9

9 call 1%

10 return 1%

Total 96%

80x86 Instruction Frequency

Lund University / EITF20/ Liang Liu

ISA Classification

52

What’s needed in an instruction set?

• Addressing

• Operands

• Operations

• Control Flow

Lund University / EITF20/ Liang Liu

Types of control instructions

53

Conditional branches

Unconditional branches (jumps)

Procedure call/returns

Lund University / EITF20/ Liang Liu

Instruction format

55

Variable instruction format

• Compact code but the instruction decoding is more complex

and thus slower

• Examples: VAX, Intel 80x86 (1-17 byte)

Fixed instruction format

• Easy and fast to decode but gives large code size

• Examples: Alpha, ARM, MIPS (4byte), PowerPC, SPARC

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

 Instruction Set Principles

 The Role of Compilers

MIPS

56

Lund University / EITF20/ Liang Liu

ISA and compiler

57

Instruction set architecture is a compiler target

By far MOST instructions executed are generated by a

compiler (exception certain special purpose processors)

Interaction compiler - ISA critical for overall performance

I/O systemInstr. Set Proc.

Compiler

Operating
System

Application

Architecture Design

Circuit Design

Instruction Set
Architecture

Lund University / EITF20/ Liang Liu

ISA and compiler: a “good or bad?” example

58

Lund University / EITF20/ Liang Liu

ISA and compiler: a “good or bad?” example

59

Lund University / EITF20/ Liang Liu

Synopsys ASIP Designer

60

Lund University / EITF20/ Liang Liu

The role of compilers

61

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signal
Specification

Compiler

Assembler

Machine Interpretation

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110

1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

Lund University / EITF20/ Liang Liu

The structure of a compiler

62

Compiler

Analysis Synthesis

Any compiler must perform two

major tasks

• Analysis of the source program

• Synthesis of a machine-language

program

Lund University / EITF20/ Liang Liu

Example of compiler optimization

64

 Code improvements made by the compiler are called

optimizations and can be classified:

• High-order transformations: procedure inlining

• Optimizations: dead code elimination

• Constant propagation

• Common sub-expression elimination

• Loop-unrolling

• Register allocation (almost most important)

• Machine-dependent optimizations (takes advantage of specific

architectural features)

Lund University / EITF20/ Liang Liu

Example of compiler optimization

65

Procedure inlining

Constant propagation

Dead code elimination
Common expression

elimination

?

Lund University / EITF20/ Liang Liu

Example of compiler optimization

66

 Code improvements made by the compiler are called

optimizations and can be classified:

• High-order transformations: procedure inlining

• Optimizations: dead code elimination

• Constant propagation

• Common sub-expression elimination

• Loop-unrolling

• Register allocation (almost most important)

• Machine-dependent optimizations (takes advantage of specific

architectural features)

 Almost all these optimizations are easier to do if there are

many general registers available!

• E.g., common sub/expression elimination stores temporary value

into a register

• Loop-unrolling

• Procedure inlining

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

 Instruction Set Principles

 The Role of Compilers

MIPS

67

Lund University / EITF20/ Liang Liu

The MIPS64 architecture

68

 An architecture representative of modern ISA:

• 64-bit load/store GPR architecture

• 32 general integer registers (R0 = 0) and 32 floating point registers

• Supported data types: bytes, half word (16 bits), word (32 bits),

double word (64 bits), single and double precision IEEE floating

points

• Memory byte addressable with 64-bit addresses

• Addressing modes: immediate and displacement

Lund University / EITF20/ Liang Liu

MIPS instruction example

70

Lund University / EITF20/ Liang Liu

MIPS instruction format

71

Lund University / EITF20/ Liang Liu

Summary

72

 The instruction set architecture has importance for the

performance

 The important aspects of an ISA are:

• register model

• addressing modes

• types of operations

• data types

• encoding

 Benchmark measurements can reveal the most common

case

 Interaction compiler

