

L.1

Chapter 1 Solutions L-2

L.2

Chapter 2 Solutions L-7

L.3

Chapter 3 Solutions L-20

L.4

Chapter 4 Solutions L-30

L.5

Chapter 5 Solutions L-46

L.6

Chapter 6 Solutions L-52

L

Solutions to Case Study

Exercises

L-2

�

Appendix L

Solutions to Case Study Exercises

Case Study 1: Chip Fabrication Cost

1.1 a.

b.

c.

The Sun Niagara is substantially larger, since it places 8 cores on a chip rather
than 1.

1.2 a.

b.

c.

$9.38

 ×

.4 = $3.75

d.

Selling price = ($9.38 + $3.75)

×

 2 = $26.26
Profit = $26.26 – $4.72 = $21.54

e.

Rate of sale = 3

×

 500,000 = 1,500,000/month
Profit = 1,500,000

×

 $21.54 = $32,310,000
$1,000,000,000/$32,310,000 = 31 months

1.3 a.

b.

Prob of one defect = 0.29

×

 0.71

7

×

 8 = 0.21
Prob of two defects = 0.29

2

×

 0.71

6

×

 28 = 0.30
Prob of one or two = 0.21

×

 0.30 = 0.51

c.

0.71

8

 = .06 (now we see why this method is inaccurate!)

L.1 Chapter 1 Solutions

Yield 1 0.7 × 1.99
4.0

-------------------------+

4–
0.28= =

Yield 1 0.75 × 3.80
4.0

----------------------------+

4–
0.12= =

Yield 1 0.30 × 3.89
4.0

----------------------------+

4–
0.36= =

Dies per wafer π × 30 2⁄()2

3.89
------------------------------= π × 30

sqrt 2 × 3.89()
----------------------------------– 182 33.8 148=–=

Cost per die $500
148 × 0.36
-------------------------- $9.38= =

Yield 1 .7 × 1.86
4.0

----------------------+

4–
0.32= =

Dies per wafer π × 30 2⁄()2

1.86
------------------------------= π × 30

sqrt 2 × 1.86()
----------------------------------– 380 48.9 331=–=

Cost per die $500
331 × .32
----------------------- $4.72= =

Yield 1 .75 × 3.80 8⁄
4.0

--------------------------------+

4–
0.71= =

Prob of error 1 0.71– 0.29= =

L.1 Chapter 1 Solutions

�

L

-

3

d.

0.51 ⁄ 0.06 = 8.5

e.

x

×

 $150 + 8.5

x

×

 $100 – (9.5

x

×

 $80) – 9.5

x

×

 $1.50 = $200,000,000

x

= 885,938 8-core chips, 8,416,390 chips total

Case Study 2: Power Consumption in Computer Systems

1.4 a.

.70

x

 = 79 + 2

×

 3.7 + 2

×

 7.9

x

 = 146

b.

4.0 W

×

 .4 + 7.9 W

×

 .6 = 6.34 W

c.

The 7200 rpm drive takes 60 s to read/seek and 40 s idle for a particular job.
The 5400 rpm disk requires 4/3

×

 60 s, or 80 s to do the same thing. There-
fore, it is idle 20% of the time.

1.5 a.

b.

c.

1.6 a.

See Figure L.1.

b.

Sun Fire T2000

c.

More expensive servers can be more compact, allowing more computers to be
stored in the same amount of space. Because real estate is so expensive, this
is a huge concern. Also, power may not be the same for both systems. It can
cost more to purchase a chip that is optimized for lower power consumption.

1.7 a.

50%

b.

c.

Sun Fire T2000 IBM x346

SPECjbb 213 91.2

SPECweb 42.4 9.93

Figure L.1

Power/performance ratios.

14 KW
79 W 2.3 W 7.0 W+ +()

-- 158=

14 KW
79 W 2.3 W 2+ + × 7.0 W()

-- 146=

MTTF

1

9 × 106
------------------ 8 × + 1

4500
------------ 1

3 × 104
------------------+ 8 × 2000 300+

9 × 106
------------------------------------- 16301

9 × 106
------------------= =

1
Failure rate
--------------------------- 9 × 106

16301
------------------ 522 hours= =

=

Power new
Power old
-------------------------- V × 0.50()2 × F × 0.50()

V 2 × F
-- 0.53 0.125= = =

.70
1 x–() x 2⁄+

-------------------------------- ; x 60%= =

L-4

�

Appendix L

Solutions to Case Study Exercises

d.

Case Study 3: The Cost of Reliability (and Failure) in Web
Servers

1.8 a.

14 days

×

 $1.4 million⁄day = $19.6 million
$4 billion – $19.6 million = $3.98 billion

b.

Increase in total revenue: 4.8/3.9 = 1.23

In the fourth quarter, the rough estimate would be a loss of 1.23

×

 $19.6 mil-
lion = $24.1 million.

c. Losing $1.4 million × .50 = $700,000 per day. This pays for $700,000/$7,500
= 93 computers per day.

d. It depends on how the 2.6 million visitors are counted.

If the 2.6 million visitors are not unique, but are actually visitors each day
summed across a month: 2.6 million × 8.4 = 21.84 million transactions per
month. $5.38 × 21.84 million = $117 million per month.

If the 2.6 million visitors are assumed to visit every day: 2.6 million × 8.4 ×
31 = 677 million transactions per month. $5.38 × 677 million = $3.6 billion
per month, which is clearly not the case, or else their online service would not
make money.

1.9 a. FIT = 109⁄ MTTF
MTTF = 109⁄ FIT = 109⁄ 100 = 10,000,000

b.

1.10 Using the simplifying assumption that all failures are independent, we sum the
probability of failure rate of all of the computers:

Failure rate = 1000 × 10–7 = 10–4 = FIT = 105, therefore MTTF = = 104

1.11 a. Assuming that we do not repair the computers, we wait for how long it takes
for 3,334 computers to fail.

3,334 × 10,000,000 = 33,340,000,000 hours

b. Total cost of the decision: $1,000 × 10,000 computers = $10 million

Expected benefit of the decision: Gain a day of downtime for every
33,340,000,000 hours of uptime. This would save us $1.4 million each
3,858,000 years. This would definitely not be worth it.

Power new
Power old
-------------------------- V × 0.70()2 × F × 0.50()

V 2
 × F

-- 0.72 × 0.5 0.245= = =

Availability MTTF
MTTF MTTR+
--------------------------------------- 107

107 24+
-------------------- about 100%= = =

105

109
-------- 109

105

L.1 Chapter 1 Solutions � L-5

Case Study 4: Performance

1.12 a. See Figure L.2.

b. See Figure L.3.

c. The arithmetic mean of the original performance shows that the Athlon 64 X2
4800+ is the fastest processor.

The arithmetic mean of the normalized processors shows that Processor X is
the fastest processor.

d. Single processors: .05

Dual processors: 1.17

e. Solutions will vary.

Chip Memory performance Dhrystone performance

Athlon 64 X2 4800+ 1.14 1.36

Pentium EE 840 1.08 1.24

Pentium D 820 1 1

Athlon 64 X2 3800+ 0.98 1.13

Pentium 4 0.91 0.5

Athlon 64 3000+ 0.98 0.5

Pentium 4 570 1.17 0.74

Widget X 2.33 0.33

Figure L.2 Performance of several processors normalized to the Pentium 4 570.

Chip Arithmetic mean
Arithmetic mean of

normalized

Athlon 64 X2 4800+ 12070.5 1.25

Pentium EE 840 11060.5 1.16

Pentium D 820 9110 1

Athlon 64 X2 3800+ 10035 1.05

Pentium 4 5176 0.95

Athlon 64 3000+ 5290.5 0.95

Pentium 4 570 7355.5 0.77

Processor X 6000 1.33

Figure L.3 Arithmetic mean of several processors.

L-6 � Appendix L Solutions to Case Study Exercises

f. Dual processors gain in CPU performance (exhibited by the Dhrystone per-
formance), but they do not necessarily increase in memory performance. This
makes sense because, although they are doubling the processing power, dual
processors do not change the memory hierarchy very much. Benchmarks that
exercise the memory often do not fit in the size of the cache, so doubling the
cache does not help the memory benchmarks substantially. In some applica-
tions, however, they could gain substantially due to the increased cache avail-
able.

1.13 a. Pentium 4 570: .4 × 3,501 + .6 × 11,210 = 8,126

Athlon 64 X2 4,800+: .4 × 3,423 + .6 × 20,718 = 13,800

b. 20,718/7,621 = 2.7

c. x × 3,501 + (1x) × 11,210 = x × 3,000 + (1x) × 15,220

x = .89

.89/.11 = 8x ratio of memory to processor computation

1.14 a. Amdahl’s Law:

b. Amdahl’s Law:

c. Amdahl’s Law:

d. Amdahl’s Law:

1
.6 .4 2⁄+
---------------------- 1.25x speedup=

1
.01 .99 2⁄+
---------------------------- 1.98x speedup=

1
.2 .8 × .6 .4 2⁄+()+
--- 1.19x speedup=

1
.8 .2 × .01 .99 2⁄+()+
--- 1.11x speedup=

L.2 Chapter 2 Solutions � L-7

Case Study 1: Exploring the Impact of Microarchitectural
Techniques

2.1 The baseline performance (in cycles, per loop iteration) of the code sequence in
Figure 2.35, if no new instruction’s execution could be initiated until the previous
instruction’s execution had completed, is 37, as shown in Figure L.4. How did I
come up with that number? Each instruction requires one clock cycle of execu-
tion (a clock cycle in which that instruction, and only that instruction, is occupy-
ing the execution units; since every instruction must execute, the loop will take at
least that many clock cycles). To that base number, we add the extra latency
cycles. Don’t forget the branch shadow cycle.

2.2 How many cycles would the loop body in the code sequence in Figure 2.35
require if the pipeline detected true data dependencies and only stalled on those,
rather than blindly stalling everything just because one functional unit is busy?
The answer is 27, as shown in Figure L.5. Remember, the point of the extra
latency cycles is to allow an instruction to complete whatever actions it needs, in
order to produce its correct output. Until that output is ready, no dependent
instructions can be executed. So the first LD must stall the next instruction for
three clock cycles. The MULTD produces a result for its successor, and therefore
must stall 4 more clocks, and so on.

Figure L.4 Baseline performance (in cycles, per loop iteration) of the code sequence
in Figure 2.35.

L.2 Chapter 2 Solutions

Loop: LD F2,0(Rx) 1 + 3

 MULTD F2,F0,F2 1 + 4

 DIVD F8,F2,F0 1 + 10

 LD F4,0(Ry) 1 + 3

 ADDD F4,F0,F4 1 + 2

 ADDD F10,F8,F2 1 + 2

 SD F4,0(Ry) 1 + 1

 ADDI Rx,Rx,#8 1

 ADDI Ry,Ry,#8 1

 SUB R20,R4,Rx 1

 BNZ R20,Loop 1 + 1

 cycles per loop iter 37

L-8 � Appendix L Solutions to Case Study Exercises

2.3 Consider a multiple-issue design. Suppose you have two execution pipelines,
each capable of beginning execution of one instruction per cycle, and enough
fetch/decode bandwidth in the front end so that it will not stall your execution.
Assume results can be immediately forwarded from one execution unit to
another, or to itself. Further assume that the only reason an execution pipeline
would stall is to observe a true data dependency. Now how many cycles does the

Figure L.5 Number of cycles required by the loop body in the code sequence in Fig-
ure 2.35.

Loop: LD F2,0(Rx) 1 + 3

 <stall>

 <stall>

 <stall>

 MULTD F2,F0,F2 1 + 4

 <stall>

 <stall>

 <stall>

 <stall>

 DIVD F8,F2,F0 1 + 10

 LD F4,0(Ry) 1 + 3

 <stall due to LD latency>

 <stall due to LD latency>

 <stall due to LD latency>

 ADDD F4,F0,F4 1 + 2

 <stall due to DIVD latency>

 <stall due to DIVD latency>

 <stall due to DIVD latency>

 <stall due to DIVD latency>

 <stall due to DIVD latency>

 ADDD F10,F8,F2 1 + 2

 SD F4,0(Ry) 1 + 1

 ADDI Rx,Rx,#8 1

 ADDI Ry,Ry,#8 1

 SUB R20,R4,Rx 1

 BNZ R20,Loop 1 + 1

 <stall due to BNZ>

 cycles per loop iter 27

L.2 Chapter 2 Solutions � L-9

loop require? The answer is 24, as shown in Figure L.6. The LD goes first, as
before, and the MULTD must wait for it through 3 extra latency cycles. After the
the MULTD comes the DIVD, which again has no opportunity to “move up” in the
schedule, due to the DIVD’s data dependency on the MULTD. But there’s an LD fol-
lowing the DIVD that does not depend on the DIVD. That LD can therefore execute
in the 2nd pipe, at the same time as the DIVD. The loop overhead instructions at
the loop’s bottom also exhibit some potential for concurrency because they do
not depend on any long-latency instructions.

Execution pipe 0 Execution pipe 1

Loop: LD F2,0(Rx) ; <nop>

<stall for LD latency> ; <nop>

<stall for LD latency> ; <nop>

<stall for LD latency> ; <nop>

MULTD F2,F0,F2 ; <nop>

<stall for MULTD latency> ; <nop>

<stall for MULTD latency> ; <nop>

<stall for MULTD latency> ; <nop>

<stall for MULTD latency> ; <nop>

DIVD F8,F2,F0 ; LD F4,0(Ry)

<stall for LD latency> ; <nop>

<stall for LD latency> ; <nop>

<stall for LD latency> ; <nop>

ADDD F4,F0,F4 ; <nop>

<stall due to DIVD latency> ; <nop>

<stall due to DIVD latency> ; <nop>

<stall due to DIVD latency> ; <nop>

<stall due to DIVD latency> ; <nop>

<stall due to DIVD latency> ; <nop>

<stall due to DIVD latency> ; <nop>

ADDD F10,F8,F2 ; SD F4,0(Ry)

ADDI Rx,Rx,#8 ; ADDI Ry,Ry,#8

SUB R20,R4,Rx ; BNZ R20,Loop

<stall due to BNZ> ; <nop>

cycles per loop iter 24

Figure L.6 Number of cycles required per loop.

L-10 � Appendix L Solutions to Case Study Exercises

2.4 Possible answers:

1. If an interrupt occurs between N and N + 1, then N + 1 must not have been
allowed to write its results to any permanent architectural state. Alternatively,
it might be permissible to delay the interrupt until N + 1 completes.

2. If N and N + 1 happen to target the same register or architectural state (say,
memory), then allowing N to overwrite what N + 1 wrote would be wrong.

3. N might be a long floating-point op that eventually traps. N + 1 cannot be
allowed to change arch state in case N is to be retried.

Long-latency ops are at highest risk of being passed by a subsequent op. The
DIVD instr will complete long after the LD F4,0(Ry), for example.

2.5 Figure L.7 demonstrates one possible way to reorder the instructions to improve
the performance of the code in Figure 2.35. The number of cycles that this reor-
dered code takes is 22.

Execution pipe 0 Execution pipe 1

Loop: LD F2,0(Rx) ; LD F4,0(Ry)

<stall for LD latency> ; <stall for LD latency>

<stall for LD latency> ; <stall for LD latency>

<stall for LD latency> ; <stall for LD latency>

MULTD F2,F0,F2 ; ADDD F4,F0,F4

<stall for MULTD latency> ; <stall for ADDD latency>

<stall for MULTD latency> ; <stall for ADDD latency>

<stall for MULTD latency> ; SD F4,0(Ry)

<stall for MULTD latency> ; <nop>

DIVD F8,F2,F0 ; <nop>

<stall for DIVD latency> ; <nop>

<stall for DIVD latency> ; <nop> #ops: 11

<stall for DIVD latency> ; <nop> #nops: (22 × 2) – 11 = 33

<stall for DIVD latency> ; <nop>

<stall for DIVD latency> ; <nop>

<stall for DIVD latency> ; <nop>

<stall for DIVD latency> ; <nop>

<stall for DIVD latency> ; <nop>

ADDI Rx,Rx,#8 ; ADDI Ry,Ry,#8

SUB R20,R4,Rx ; <nop>

ADDD F10,F8,F2 ; BNZ R20,Loop

<stall due to BNZ> ; <stall due to BNZ>

cycles per loop iter 22

Figure L.7 Number of cycles taken by reordered code.

L.2 Chapter 2 Solutions � L-11

2.6 a. Fraction of all cycles, counting both pipes, wasted in the reordered code
shown in Figure L.7:

33 wasted out of total of 2 × 22 opportunities

33/44 = 0.75

b. Results of hand-unrolling two iterations of the loop from code shown in Fig-
ure L.8:

� Cycles per loop iter: 23

� Each trip through the loop accomplishes two loops worth of algorithm
work. So effective cycles per loop is 23/2 = 11.5.

� Speedup = 22/11.5

Speedup = 1.91

Execution pipe 0 Execution pipe 1

Loop: LD F2,0(Rx) ; LD F4,0(Ry)

LD F2,0(Rx) ; LD F4,0(Ry)

<stall for LD latency> ; <nop>

<stall for LD latency> ; <nop>

MULTD F2,F0,F2 ; ADDD F4,F0,F4

MULTD F2,F0,F2 ; ADDD F4,F0,F4

<stall for MULTD latency> ; <nop>

<stall for MULTD latency> ; SD F4,0(Ry)

<stall for MULTD latency> ; SD F4,0(Ry)

DIVD F8,F2,F0 ; <nop>

DIVD F8,F2,F0 ; <nop>

<stall due to DIVD latency> ; <nop>

<stall due to DIVD latency> ; <nop>

<stall due to DIVD latency> ; <nop>

<stall due to DIVD latency> ; <nop>

<stall due to DIVD latency> ; <nop>

<stall due to DIVD latency> ; <nop>

<stall due to DIVD latency> ; <nop>

ADDI Rx,Rx,#16 ; ADDI Ry,Ry,#16

SUB R20,R4,Rx ; <nop>

ADDD F10,F8,F2 ; <nop>

ADDD F10,F8,F2 ; BNZ R20,Loop

<stall due to BNZ> ; <nop>

Figure L.8 Hand-unrolling two iterations of the loop from code shown in Figure L.7.

L-12 � Appendix L Solutions to Case Study Exercises

2.7 Consider the code sequence in Figure 2.36. Every time you see a destination reg-
ister in the code, substitute the next available T, beginning with T9. Then update
all the src registers accordingly, so that true data dependencies are maintained.
Show the resulting code. (Hint: See Figure 2.37.) Answer shown in Figure L.9.

2.8 The rename table has arbitrary values at clock cycle N – 1. Look at the next two
instructions (I0 and I1): I0 targets the F5 register, and I1 will write the F9 regis-
ter. This means that in clock cycle N, the rename table will have had its entries 5
and 9 overwritten with the next available Temp register designators. I0 gets
renamed first, so it gets the first T reg (9). I1 then gets renamed to T10. In clock
cycle N, instructions 12 and 13 come along; 12 will overwrite F5, and 13 will
write F2. This means the rename table’s entry 5 gets written again, this time to 11
(the next available T reg), and rename table entry 2 is written to the T reg after
that (12). In principle, you don’t have to allocate T regs sequentially, but it’s
much easier in hardware if you do.

Loop: LD T9,0(Rx)

IO: MULTD T10,F0,T9

I1: DIVD T11,F0,T9

I2: LD T12,0(Ry)

I3: ADDD T13,F0,T12

I4: ADDD T14,T11,T9

I5: SD T15,0(Ry)

Figure L.9 Register renaming.

L.2 Chapter 2 Solutions � L-13

2.9 The value of R1 when the sequence has been executed is shown in Figure L.11.

Figure L.10 Cycle-by-cycle state of the rename table for every instruction of the
code in Figure 2.38.

ADD R1, R1, R1; 5 + 5 −> 10

ADD R1, R1, R1; 10 + 10 −> 20

ADD R1, R1, R1; 20 + 20 −> 40

Figure L.11 Value of R1 when the sequence has been executed.

Renamed in cycle N

Renamed in cycle N +1

N +1NN –1

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

9

6

7

8

10

0

1

12

3

4

11

6

7

8

10

Clock cycle

I1:

I2:

I3:

I4:

MULTD

ADDD

ADDD

DIVD

F5,F0,F2

F9,F5,F4

F5,F5,F2

F2,F9,F0

Next avail
T reg

R
en

am
e

ta
bl

e

62

63

0

1

2

3

4

5

6

7

8

9

62

63

12 11 10 9

62

63

0

1

2

3

4

5

6

7

8

9

62

63

62

63

0

1

2

3

4

5

6

7

8

9

62

63

14 13 12 11 16 15 14 13

L-14 � Appendix L Solutions to Case Study Exercises

2.10 An example of an event that, in the presence of self-draining pipelines, could dis-
rupt the pipelining and yield wrong results is shown in Figure L.12.

2.11 The convention is that an instruction does not enter the execution phase until all
of its operands are ready. So the first instruction, LW R1,0(R2), marches through
its first three stages (F, D, E) but that M stage that comes next requires the usual
cycle plus two more for latency. Until the data from that LD is available at the exe-
cution unit, any subsequent instructions (especially that ADDI R1, R1, #1) cannot
enter the E stage, and must therefore stall at the D stage.

a. 5 cycles are lost to branch overhead. Without bypassing, the results of the SUB
instruction are not available until the SUB’s W stage. That tacks on an extra 5
clock cycles at the end of the loop, because the next loop’s LW R1 can’t begin
until the branch has completed.

b. 2 cycles are lost with static predictor. A static branch predictor may have a
heuristic like “if branch target is a negative offset, assume it’s a loop edge,
and loops are usually taken branches.” But we still had to fetch and decode
the branch to see that, so still losing 2 clock cycles here.

c. No cycles are lost with correct dynamic prediction. A dynamic branch predic-
tor remembers that when the branch instruction was fetched in the past, it
eventually turned out to be a branch, and this branch was taken. So a “pre-
dicted taken” will occur in the same cycle as the branch is fetched, and the
next fetch after that will be to the presumed target. If correct, we’ve saved all
of the latency cyclles seen in 2.11 (a) and 2.11 (b). If not, we have some
cleaning up to do.

Figure L.12 Example of an event that yields wrong results. What could go wrong
with this? If an interrupt is taken between clock cycles 1 and 4, then the results of the LW
at cycle 2 will end up in R1, instead of the LW at cycle 1. Bank stalls and ECC stalls will
cause the same effect—pipes will drain, and the last writer wins, a classic WAW hazard.
All other “intermediate” results are lost.

alu0

ADDI R10, R1, #1

ADDI R10, R1, #1

ADDI R2, R2, #8

1

2

3

4

5

6

7

Clock
cycle

alu1

ADDI R11, R3, #1

ADDI R11, R3, #1

SUB R4, R3, R2

BNZ R4, Loop

ld/st

LW R1, 0(R2)

LW R1, 16(R2)

SW R1, 0(R2)

SW R1, 16(R2)

LW R3, 8(R2)

LW R3, 24(R2)

SW R3, 8(R2)

SW R3, 24(R2)

ld/st br

L.2 Chapter 2 Solutions � L-15

2.12 a. Instruction in code where register renaming improves persormance are shown
in Figure L.14.

Figure L.13 Phases of each instruction per clock cycle for one iteration of the loop.

Figure L.14 Instructions in code where register renaming improves performance.

Loop length

Loop:

LW R1,0(R2)

ADDI R1,R1,#1

SW R1,0(R2)

ADDI R2,R2,#4

SUB R4,R3,R2

BNZ R4, Loop

LW R1,0(R2)

1

F

2

D

F

3

E

D

F

4

M

–

–

5

–

–

–

6

–

–

–

7

W

E

D

F

8

M

E

D

F

9

W

M

E

–

10

W

M

–

11

W

D

F

12

E

–

13

M

–

14

W

D

15

E

16

M

17

W

F

18

D

19

(2.11 a.) 5 cycles lost to branch overhead

(2.11 b.) 2 cycles lost with static predictor

(2.11 c.) No cycles lost with correct dynamic prediction

; src F2 is true data dependency.
; Renaming doesn’t let dependent instr
; start any earlier, but if you don’t change
; dest to something other than F2, RS
; would have to know there are multiple
; copies of F2 around (the green copy and
; the red copy) and have to track them.

; ADDD should target a new register so
; dependency-checking HW never has to
; wonder “which F4 is this, the result
; of the LD or the ADDD?”

; rename for next loop iteration
; rename for next loop iteration
; use this loop’s copy of Rx here

LD F2,0(Rx)

MULTD F2,F0,F2

DIVD F8,F2,FO

LD F4,0(Ry)

ADDD F4,F0,F4

ADDD F10,F8,F2

SD F4,0(Ry)

ADDI Rx,Rx,#8

ADDI Ry,Ry,#8

SUB R20,R4,Rx

BNZ R20,Loop

L-16 � Appendix L Solutions to Case Study Exercises

b. Number of clock cycles taken by the code sequence is shown in Figure L.15.

c. See Figures L.16 and L.17 The bold instructions are those instructions that
are present in the RS, and ready for dispatch. Think of this exercise from the
Reservation Station’s point of view: at any given clock cycle, it can only
“see” the instructions that were previously written into it, that have not
already dispatched. From that pool, the RS’s job is to identify and dispatch
the two eligible instructions that will most boost machine performance.

Figure L.15 Number of clock cycles taken by the code sequence.

alu0

ADDI Rx,Rx,#8

SUB R20,R4,Rx

MULTD F2,F0,F2

DIVD F8,F2,F0

BNZ R20,Loop

(branch shadow)

ADDI Ry,Ry,#8

ADDD F4,F0,F4

ADDD F10,F8,F2

1

2

3

4

5

6

7

8

9

10

11

12

. . .

20

21

22

Clock cycle

22 clock cycles total

Note: these ADDI’s are
generating Rx,y for next
loop iteration, not this one.

Cycle op was dispatched to FU

alu1 ld/st

LD F2,0(Rx)

LD F4,0(Ry)

SD F4,0(Ry)

LD latency

ADDD latency

M
U

LT
D

 latency

DIVD latency

L.2 Chapter 2 Solutions � L-17

Figure L.16 Candidates for dispatch.

Figure L.17 Number of clock cycles required. 22 clock cycles total: lucked out; second
LD became visible in time to execute in cycle 2.

LD

MULTD

DIVD

LD

ADDD

ADDD

SD

ADDI

ADDI

SUB

BNZ

10

F2, 0(Rx)

F2,F0,F2

F8,F2,F0

F4, 0(Ry)

F4,F0,F4

F10,F8,F2

F4,0(Ry)

Rx,Rx,#8

Ry,Ry,#8

R20,R4,Rx

20,Loop

LD

MULTD

DIVD

LD

ADDD

ADDD

SD

ADDI

ADDI

SUB

BNZ

2

F2, 0(Rx)

F2,F0,F2

F8,F2,F0

F4, 0(Ry)

F4,F0,F4

F10,F8,F2

F4,0(Ry)

Rx,Rx,#8

Ry,Ry,#8

R20,R4,Rx

20,Loop

LD

MULTD

DIVD

LD

ADDD

ADDD

SD

ADDI

ADDI

SUB

BNZ

3

F2, 0(Rx)

F2,F0,F2

F8,F2,F0

F4, 0(Ry)

F4,F0,F4

F10,F8,F2

F4,0(Ry)

Rx,Rx,#8

Ry,Ry,#8

R20,R4,Rx

20,Loop

LD

MULTD

DIVD

LD

ADDD

ADDD

SD

ADDI

ADDI

SUB

BNZ

4

F2, 0(Rx)

F2,F0,F2

F8,F2,F0

F4, 0(Ry)

F4,F0,F4

F10,F8,F2

F4,0(Ry)

Rx,Rx,#8

Ry,Ry,#8

R20,R4,Rx

20,Loop

LD

MULTD

DIVD

LD

ADDD

ADDD

SD

ADDI

ADDI

SUB

BNZ

5 . . .

F2, 0(Rx)

F2,F0,F2

F8,F2,F0

F4, 0(Ry)

F4,F0,F4

F10,F8,F2

F4,0(Ry)

Rx,Rx,#8

Ry,Ry,#8

R20,R4,Rx

20,Loop

Candidates for dispatchFirst 2 instructions appear in RS

alu0

ADDI Rx,Rx,#8

SUB R20,R4,Rx

MULTD F2,F0,F2

DIVD F8,F2,F0

BNZ R20,Loop

(Branch shadow)

ADDI Ry,Ry,#8

ADDD F4,F0,F4

ADDD F10,F8,F2

1

2

3

4

5

6

7

8

9

10

11

12

. . .

20

21

22

Clock cycle

alu1 ld/st

LD F2,0(Rx)

LD F4,0(Ry)

SD F4,0(Ry)

L-18 � Appendix L Solutions to Case Study Exercises

d. See Figure L.18.

1. Another ALU: 0% improvement.

2. Another LD/ST unit: 0% improvement.

3. Full bypassing: critical path is LD -> Mult -> Div -> ADDD. Bypassing
would save 1 cycle from latency of each, so 2 cycles total.

4. Cutting longest latency in half: divider is longest at 10 cycles. This would
save 5 cycles total.

Figure L.18 Speedup is (execution time without enhancement) / (execution time
with enhancement) = 21 / (21 – 5) = 1.31.

alu0

ADDI Rx,Rx,#8

SUB R20,R4,Rx

MULTD F2,F0,F2

DIVD F8,F2,F0

BNZ R20,Loop

ADDI Ry,Ry,#8

ADDD F4,F0,F4

ADDD F10,F8,F2

1

2

3

4

5

6

7

8

9

10

11

12

. . .

20

21

22

Clock cycle

21 clock cycles total

Cycle op was dispatched to FU

alu1 ld/st

LD F2,0(Rx)

LD F4,0(Ry)

SD F4,0(Ry)

LD latency

ADDD latency

M
U

LT
D

 latency
DIVD latency

L.2 Chapter 2 Solutions � L-19

e. See Figure L.19.

Case Study 2: Modeling a Branch Predictor

2.13 For this exercise, please refer to the Case Study Resource Files directory on the
companion CD. The resources for Case Study 2 include a php_out text file,
which is the expected output of the C program the reader is asked to write for this
exercise.

Figure L.19 Number of clock cycles required to do two loops’ worth of work. Critical
path is LD -> MULTD -> DIVD -> ADDD. If RS schedules second loop’s critical LD in cycle
2, then loop 2’s critical dependency chain will be the same length as loop 1’s is. Since
we’re not functional unit limited for this code, no extra clock cycle is needed.

alu0

ADDI Rx,Rx,#8

SUB R20,R4,Rx

MULTD F2,F0,F2

DIVD F8,F2,F0

MULTD F2,F0,F2

DIVD F8,F2,F0

BNZ R20,Loop

ADDI Ry,Ry,#8

ADDD F4,F0,F4

ADDD F10,F8,F2

ADDD F10,F8,F2

1

2

3

4

5

6

7

8

9

10

11

12

. . .

20

21

22

Clock cycle

21 clock cycles total

Cycle op was dispatched to FU

alu1 ld/st

LD F2,0(Rx)

LD F2,0(Rx)

LD F4,0(Ry)

SD F4,0(Ry)

ADDD latency

L-20 � Appendix L Solutions to Case Study Exercises

Case Study: Dependences and Instruction-Level Parallelism

3.1 a. Figure L.20 shows the dependence graph for the C code in Figure 3.14. Each
node in Figure L.20 corresponds to a line of C statement in Figure 3.14. Note
that each node 6 in Figure L.20 starts an iteration of the for loop in Figure
3.14.

Since we are assuming that each line in Figure 3.14 corresponds to one
machine instruction, Figure L.20 can be viewed as the instruction-level
dependence graph. A data true dependence exists between line 6 and line 9.
Line 6 increments the value of i, and line 9 uses the value of i to index into
the element array. This is shown as an arc from node 6 to node 9 in Figure
L.20. Line 9 of Figure 3.14 calculates the hash_index value that is used by
lines 10 and 11 to index into the element array, causing true dependences
from line 9 to line 10 and line 11. This is reflected by arcs going from node 9
to node 10 and node 11 in Figure L.20. Line 11 in Figure 3.14 initializes

Figure L.20 Dynamic dependence graph for six insertions under the ideal case.

L.3 Chapter 3 Solutions

6

9

10 11

17 18

12

6

9

10 11

17 18

12

17 18

12

6

9

10 11

17 18

6

9

10 11

12

6

9

10 11

17 18

12

6

9

10 11

17 18

12

L.3 Chapter 3 Solutions � L-21

ptrCurr, which is used by line 12. This is reflected as a true dependence arc
from node 11 to node 12 in Figure L.20.

Note that node 15 and node 16 are not reflected in Figure L.20. Recall that all
buckets are initially empty and each element is being inserted into a different
bucket. Therefore, the while loop body is never entered in the ideal case.

Line 12 of Figure 3.14 enforces a control dependence over line 17 and line
18. The execution of line 17 and line 18 hinges upon the test that skips the
while loop body. This is shown as control dependence arcs from node 12 to
node 17 and node 18.

There is a data output dependence from Line 9 of one iteration to Line 9 of
the next iteration. This is due to the fact that both dynamic instructions need
to write into the same variable hash_index. For simplicity, we omitted the
data output dependence from Line 10 of one iteration to itself in the next iter-
ation due to variable ptrUpdate as well as the dependence from Line 11 of
one iteration to itself in the next iteration due to variable ptrCurr.

There is a data antidependence from Line 17 of one iteration to Line 10 of the
next iteration. This is due to the fact that Line 17 needs to read from variable
ptrUpdate before Line 10 of the next iteration overwrites its contents. The
reader should verify that there are also data anti--dependences from Lines 10
and 11 of one iteration to Line 9 of the next iteration, from Line 18 to Line 10
of the next iteration, and from Line 12 to Line 11 for the next iteration.

Note that we have also omitted some data true dependence arcs from Figure
L.20. For example, there should be a true dependence arc from node 10 to
node 17 and node 18. This is because line 10 of Figure 3.14 initializes
ptrUpdate, which is used by lines 17 and 18. These dependences, however,
do not impose any more constraints than what is already imposed by the con-
trol dependence arcs from node 12 to node 17 and node 18. Therefore, we
omitted these dependence arcs from Figure L.20 in favor of simplicity. The
reader should identify any other omitted data true dependences from Figure
L.20.

In the ideal case, all for loop iterations are independent of each other once
the for loop header (node 6) generates the i value needed for the iteration.
Node 6 of one iteration generates the i value needed by the next iteration.
This is reflected by the dependence arc going from node 6 of one iteration to
node 6 of the next iteration. There are no other dependence arcs going from
any node in a for loop iteration to subsequent iterations. This is because each
for loop iteration is working on a different bucket. The changes made by line
18 (×ptrUpdate=) to the pointers in each bucket will not affect the insertion
of data into other buckets. This allows for a great deal of parallelism.

Recall that we assume that each statement in Figure 3.14 corresponds to one
machine instruction and takes 1 clock cycle to execute. This makes the
latency of nodes in Figure L.20 1 cycle each. Therefore, each horizontal row
of Figure L.20 represents the instructions that are ready to execute at a clock

L-22 � Appendix L Solutions to Case Study Exercises

cycle. The width of the graph at any given point corresponds to the amount of
instruction-level parallelism available during that clock cycle.

b. As shown in Figure L.20, each iteration of the outer for loop has 7 instruc-
tions. It iterates 1024 times. Thus, 7168 instructions are executed.

The for loop takes 4 cycles to enter steady state. After that, one iteration is
completed every clock cycle. Thus the loop takes 4 + 1024 = 1028 cycles to
execute.

c. 7168 instructions are executed in 1028 cycles. The average level of ILP avail-
able is 7168/1028 = 6.973 instructions per cycle.

d. See Figure L.21. Note that the cross-iteration dependence on the i value cal-
culation can easily be removed by unrolling the loop. For example, one can
unroll the loop once and change the usage of the array index usage of the

Figure L.21 Hash table code example.

6 for (i = 0; i < N_ELEMENTS; i+=2)
 {
7 Element *ptrCurr, **ptrUpdate;
8 int hash_index;

 /* Find the location at which the new element is to be inserted. */
9 hash index = element[i].value & 1023;
10 ptrUpdate = &bucket[hash_index];
11 ptrCurr = bucket[hash_index];
 /* Find the place in the chain to insert the new element. */
12 while (ptrCurr &&
13 ptrCurr->value <= element[i].value)
14 {
15 ptrUpdate = &ptrCurr->next;
16 ptrCurr = ptrCurr->next;
 }

 /* Update pointers to insert the new element into the chain. */
17 element[i].next = *ptrUpdate;
18 *ptrUpdate = &element[i];

9′ hash_index = element[i+1].value & 1023;
10′ ptrUpdate = $bucket[hash_index];
11′ ptrCurr = bucket[hash_index];
12 while (ptrCurr &&
13 ptrCurr->value <= element[i+1].value)
14 {
15 ptrUpdate = &$ptrCurr->next;
16 ptrCurr = ptrCurr->next;
 }

 /* Update pointers to insert the new element into the chain. */
17 element[i+1].next = *ptrUpdate;
18 *ptrUpdate = &$element[i+1];
 }

L.3 Chapter 3 Solutions � L-23

unrolled iteration to element[i+1]. Note that the two resulting parts of the
for loop body after unrolling transformation are completely independent of
each other. This doubles the amount of parallelism available. The amount of
parallelism is proportional to the number of unrolls performed. Basically,
with the ideal case, a compiler can easily transform the code to expose a very
large amount of parallelism.

e. Figure L.22 shows the time frame in which each of these variables needs to
occupy a register. The first iteration requires 4 registers. The reader should be
able to tell some variables can occupy a register that is no longer needed by
another variable. For example, the hash_index of iteration 2 can occupy the
same register occupied by the hash_index of iteration 1. Therefore, the over-
lapped execution of the next iteration uses only 2 additional registers.

Similarly the third and the fourth iteration each requires another one register.
Each additional iteration requires another register. By the time the fifth itera-
tion starts execution, it does not add any more register usage since the register
for i value in the first iteration is no longer needed. As long as the hardware
has no fewer than 8 registers, the parallelism shown in Figure 3.15 can be
fully realized. However, if the hardware provides fewer than 8 registers, one
or more of the iterations will need to be delayed until some of the registers
are freed up. This would result in a reduced amount of parallelism.

Figure L.22 Register lifetime graph for the ideal case.

6

9

hash_index

hash_index

hash_index

10 11

17 18

12

ptrCurr

ptrUpdate

i

12

17 18

6

9

10 11

6

9

10 11

17 18

12

ptrCurr

ptrUpdate

i

ptrUpdate

i

L-24 � Appendix L Solutions to Case Study Exercises

f. See Figure L.23. Each iteration of the for loop has 7 instructions. In a pro-
cessor with an issue rate of 3 instructions per cycle, it takes about 2 cycles for
the processor to issue one iteration. Thus, the earliest time the instructions in
the second iteration can be even considered for execution is 2 cycles after the
first iteration. This delays the start of the next iteration by 1 clock cycle.

Figure L.24 shows the instruction issue timing of the 3-issue processor. Note
that the limited issue rate causes iterations 2 and 3 to be delayed by 1 clock
cycle. It causes iteration 4, however, to be delayed by 2 clock cycles. This is a
repeating pattern.

Cycle

1 6 9 10

2 11 12 17

3 18 6 9

4 10 11 12

5 17 18 6

6 9 10 11

7 12 17 18

8 6 9 10

Figure L.23 Instruction issue timing.

Figure L.24 Execution timing due to limited issue rate for the ideal case.

6

9

10 11

17 18

12

12

17 18

6

9

10 11 6

9

10 11

17 18

12

L.3 Chapter 3 Solutions � L-25

The reduction of parallelism due to limited instruction issue rate can be cal-
culated based on the number of clock cycles needed to execute the for loop.
Since the number of instructions in the for loop remains the same, any
increase in execution cycle results in decreased parallelism. It takes 5 cycles
for the first iteration to complete. After that, one iteration completes at cycles
7, 9, 12, 14, 16, 19, Thus the for loop completes in 5 + 2 × 645 + 3 ×
342 = 5 + 1290 + 684 = 1979 cycles. When compared to part (b), limiting the
issue rate to 3 instructions per cycle reduces the amount of parallelism to
about half!

g. In order to achieve the level of parallelism shown in Figure 3.15, we must
assume that the instruction window is large enough to hold instructions 17,
18 of the first iteration, instructions 12, 17, 18 of the second iteration, instruc-
tions 10, 11, 12, 17, and 18 of the third iteration as well as instructions 9, 10,
11, 12, 17, 18 of the second iteration when instruction 6 of the third iteration
is considered for execution. If the instruction window is not large enough, the
processor would be stalled before instruction 6 of the third iteration can be
considered for execution. This would increase the number of clocks required
to execute the for loop, thus reducing the parallelism. The minimal instruc-
tion window size for the maximal ILP is thus 17 instructions. Note that this is
a small number. Part of the reason is that we picked a scenario where there is
no dependence across for loop iterations and that there is no other realistic
resource constraints. The reader should verify that, with more realistic execu-
tion constraints, much larger instruction windows will be needed in order to
support available ILP.

3.2 a Refer to Figures 3.14 and 3.15. The insertions of data elements 0 and 1 are
still parallel. The insertion of 1024, on the other hand, is made into the same
bucket as element 0. The execution of lines 17 and 18 for element 0 can affect
the execution of lines 11, 12, 13, 15, and 16 for element 1024. That is, the
new element 0 inserted into bucket 0 will affect the execution of the linked
list traversal when inserting element 1024 into the same bucket. In Figure
L.25, we show a dependence arc going from node 18 of the first iteration to
node 11 of the third iteration. These dependences did not exist in the ideal
case shown in Figure L.20. We show only the dependence from node 18 of
one iteration to node 11 of a subsequent iteration for simplicity. There are
similar dependence arcs to nodes 12, 13, 15, 16, but they do not add to more
constraints than the ones we are showing. The reader is nevertheless encour-
aged to draw all the remaining dependence arcs for a complete study. Note
that these new dependences skip iteration 2, thus still allowing substantial
instruction-level parallelism.

b. The number of instructions executed for each for loop iteration increases as
the numbers of data elements hashed into bucket 0 and bucket 1 increase.
Iterations 1 and 2 have 7 instructions each. Iterations 3 and 4 have 11 instruc-
tions each. The reader should be able to verify that iterations 5 and 6 of the
for loop have 15 instructions each. Each successive pair of iterations will

L-26 � Appendix L Solutions to Case Study Exercises

have 4 more instructions each than the previous pair. This will continue to
iterations 1023 and 1024. The total number of instructions can be expressed
as the following series:

= 2 × (7 + 11 + 15 + . . . + (7 + (N – 1) × 4))
= 2 × N/2 × (14 + (N – 1) × 4))
= N × (4 × N + 10)
= 4N2 + 10N

where N is the number of pairs of data elements.

In our case, N is 512, so the total number of dynamic instructions executed is
4 × 218 + 10 × 29 = 1,048,576 + 5120 = 1,053,696. Note that there are many
more instructions executed when the data elements are hashed into two buck-

Figure L.25 Dynamic dependence graph of the hash table code when the data ele-
ment values are 0, 1, 1024, 1025, 2048, 2049, 3072, 3073,

6

9

10 11

17 18

12

6

9

10 11

17 18

12

6

9

10

11

17 18

12

15 16

13

12

6

9

10

11

17 18

12

15 16

13

12

6

9

10

11

17 18

12

15 16

13

12

L.3 Chapter 3 Solutions � L-27

ets, rather than evenly into the 1024 buckets. This is why it is important to
design the hash functions so that the data elements are hashed evenly into all
the buckets.

c. The number of clock cycles required to execute all the instructions can be
derived by examining the critical path in Figure L.25. The critical path goes
from node 6 of iteration 1 to nodes 6, 9, 11, 12, 18 of iteration 2, and then to
nodes 11, 12, 13, 16, 12, 18 of iteration 3. Note that the critical path length
contributed by each iteration forms the following series:

1, 5, 3 + 3, 3 + 2 × 3, . . . 3 + (N – 1) × 3

The total length of the critical path is the sum of contributions

= 1 + 5 + (3 + 3) + (3 + 2 × 3) + (3 + 3 × 3) + (3 + (N – 1) × 3)
= 6 + 6 + ((N – 2)/2) × (6 + (N + 1) × 3)

where N is the number of pairs of data elements.

In our case, N is 512, so the total number of clock cycles for executing all the
instructions in the dynamic dependence graph is

12 + 255 × (6 + (513) × 3)
= 12 + 255 × (1545)
= 12 + 393,975
= 393,987

d. The amount of instruction-level parallelism available is the total number of
instructions executed divided by the critical path length. The answer is

1,053,696/393,987
= 2.67

Note that the level of instruction-level parallelism has been reduced from
6.973 in the ideal case to 2.67. This is due to the additional dependences you
observed in part (a). There is an interesting double penalty when elements are
hashed into the same bucket: the total number of instructions executed
increases and the amount of instruction-level parallelism decreases. In a pro-
cessor, these double penalties will likely interact and reduce the performance
of the hash table code much more than the programmer expected. This dem-
onstrates a phenomenon in parallel processing machines. The algorithm
designer often needs to pay attention not only to the effect of algorithms on
the total number of instructions executed but also to their effect on the paral-
lelism available to the hardware.

e. In the worst case, all new data elements are entered into the same bucket and
they come in ascending order. One such sequence would be 0, 1024, 2048,
3072, 4096, . . . The level of serialization depends on the accuracy of the
memory disambiguation mechanism. In the worst case, the linked-list tra-
versal of an iteration will not be able to start until the linked-list updates of all
previous iterations are complete. Such serialization will essentially eliminate
any overlap between the while loop portions across for loop iterations. Note
also that this sequence will also cause more instructions to be executed.

L-28 � Appendix L Solutions to Case Study Exercises

f. With perfect memory disambiguation, node 18 for element 0 still affect the
execution of node 11 for element 1024. However, after the insertion of ele-
ment 0 is complete, node 18 of one for loop iteration will only affect the exe-
cution of node 16 of the penultimate while loop iteration of the next for loop
iteration. This can greatly increase the overlap of successive for loop itera-
tions. Also, the number of critical path clock cycles contributed by each for
loop iteration becomes constant: 6 cycles (node 16 → 12 → 13 → 16 → 12
→ 18). This makes the total clock cycles as determined by the critical path to
be:

5 + 6 × 1023 = 6143 cycles

Speculation allows much more substantial overlap of loop iterations and con-
fers a degree of immunity to increased memory latency, as subsequent opera-
tions can be initiated while previous stores remain to be resolved. In cases
such as this, where the addresses of stores depend on the traversal of large
data structures, this can have a substantial effect. Speculation always brings
with it the cost of maintaining speculative information and the risk of mis-
speculation (with the cost of recovery). These are factors that should not be
ignored in selecting an appropriate speculation strategy.

g. The total number of instructions executed is

7 + 11 + . . . (7 + 4 × (N – 1))
= (N/2) × (14 + 4 × (N – 1))
= N × (7 + 2 × (N – 1))

where N is the number of data elements.

In our case, N is 1024. The total number of instructions is 2,102,272.

h. The level of instruction-level parallelism is

2,102,272/6143 = 342.2

Beyond perfect memory disambiguation, the keys to achieving such a high
level of instruction-level parallelism are (1) a large instruction window and
(2) perfect branch prediction.

i. The key to achieving the level of instruction-level parallelism in part (h) is to
overlap the while loop execution of one for loop iteration with those of
many subsequent for loop iterations. This requires that the instruction win-
dows be large enough to contain instructions from many for loop iterations.
The number of instructions in each for-loop iteration increases very quickly
as the number of elements increase. For example, by the time the last element
is inserted into the hash table, the number of instructions in the for loop iter-
ation will reach

7 + 4 × (N – 1) where N is 1024
= 4099

Since each iteration of the for loop provides only a small amount of parallel-
ism, it is natural to conclude that many for loop iterations must overlap in
order to achieve instruction-level parallelism of 342.2. Any instruction win-

L.3 Chapter 3 Solutions � L-29

dow less than 4099 will likely cut down the instruction-level parallelism to
less than, say, 10 instructions per cycle.

j. The exit branch of the while loop will likely cause branch prediction misses
since the number of iterations taken by the while loop changes with every
for loop iteration. Each such branch prediction miss disrupts the overlapped
execution across for loop iterations. This means that the execution must reen-
ter the steady state after the branch prediction miss is handled. It will intro-
duce at least three extra cycles into total execution time, thus reducing the
average level of ILP available. Assuming that the mispredictions will happen
to all for loop iterations, they will essentially bring the level of instruction-
level parallelism back down to that of a single for loop iteration, which will
be somewhere around 1.5.

Aggressive but inaccurate branch prediction can lead to the initiation of many
instruction executions that will be squashed when misprediction is detected.
This can reduce the efficiency of execution, which has implications for power
consumed and for total performance in a multithreaded environment. Some-
times the off-path instructions can initiate useful memory subsystem opera-
tions early, resulting in a small performance improvement.

k. A static data dependence graph is constructed with nodes representing static
instructions and arcs representing control flows and data dependences. Figure
L.26 shows a simplified static data dependence graph for the hash table code.
The heavy arcs represent the control flows that correspond to the iteration

Figure L.26 (Simplified) static dependence graph of the hash table code with con-
trol flow and worst-case dependence arcs.

6

9

10 11

12

17 18

15 16

13 1
1

1

L-30 � Appendix L Solutions to Case Study Exercises

control of the while loop and the for loop. These loop control flows allow
the compiler to represent a very large number of dynamic instructions with a
small number of static instructions.

The worst-case dependences from one iteration to a future iteration are
expressed as dependence arcs marked with “dependence distance,” a value
indicating that the dependences go across one or more iterations. For exam-
ple, there is a dependence from node 6 of one iteration of the for loop to
itself in the next iteration. This is expressed with a “1” value on the depen-
dence arc to indicate that the dependence goes from one iteration to the next.

The memory dependence from node 18 of one iteration of the for loop to
node 11 of a future iteration is shown as an arc of dependence distance 1.
This is conservative since the dependence may not be on the immediate next
iteration. This, however, gives the worst-case constraint so that the compiler
will constrain its actions to be on the safe side.

The static dependence graph shown in Figure L.26 is simplified in that it does
not contain all the dependence arcs. Those dependence arcs that do not
impose any further scheduling constraints than the ones shown are omitted
for clarity. One such example is the arc from node 10 to nodes 17 and 18. The
dependence does not impose any additional scheduling constraints than the
arcs 11 → 12 → 13 → 16 do. They are shown as dashed lines for illustration
purposes. The reader should compare the static dependence graph in Figure
L.26 with the worst-case dynamic dependence graph since they should cap-
ture the same constraints.

Case Study 1: Simple, Bus-Based Multiprocessor

4.1 a. P0.B0: (S, 120, 00, 20), read returns 20

b. P0.B0: (M, 120, 00, 80), P15.B0: (I, 120, 00, 20)

c. P15.B0: (M, 120, 00, 80)

d. P0.B2: (S, 110, 00, 30), P1.B2: (S, 110, 00, 30), M[110]: (00, 30), read
returns 30

e. P0.B1: (M, 108, 00, 48), P15.B1: (I, 108, 00, 08)

f. P0.B2: (M, 130, 00, 78), M[110]: (00, 30)

g. P0.B2: (M, 130, 00, 78)

4.2 a. P0: read 120 Read miss, satisfied by memory
P0: read 128 Read miss, satisfied by P1’s cache
P0: read 130 Read miss, satisfied by memory, writeback 110
Implementation 1: 100 + 70 + 10 + 100 + 10 = 290 stall cycles
Implementation 2: 100 + 130 + 10 + 100 + 10 = 350 stall cycles

L.4 Chapter 4 Solutions

L.4 Chapter 4 Solutions � L-31

b. P0: read 100 Read miss, satisfied by memory
P0: write 108 <-- 48 Write hit, sends invalidate
P0: write 130 <-- 78 Write miss, satisfied by memory, write back 110
Implementation 1: 100 + 15 + 10 + 100 = 225 stall cycles
Implementation 2: 100 + 15 + 10 + 100 = 225 stall cycles

c. P1: read 120 Read miss, satisfied by memory
P1: read 128 Read hit
P1: read 130 Read miss, satisfied by memory
Implementation 1: 100 + 0 + 100 = 200 stall cycles
Implementation 2: 100 + 0 + 100 = 200 stall cycles

d. P1: read 100 Read miss, satisfied by memory
P1: write 108 <-- 48 Write miss, satisfied by memory, write back 128
P1: write 130 <-- 78 Write miss, satisfied by memory
Implementation 1: 100 + 100 + 10 + 100 = 310 stall cycles
Implementation 2: 100 + 100 + 10 + 100 = 310 stall cycles

4.3 See Figure L.27.

4.4 a. P1: read 110 Read miss, P0’s cache
P15: read 110 Read miss, MSI satisfies in memory, MOSI satisfies in

P0’s cache
P0: read 110 Read hit
MSI: 70 + 10 + 100 + 0 = 180 stall cycles
MOSI: 70 + 10 + 70 + 10 + 0 = 160 stall cycles

Figure L.27 Protocol diagram.

Modified

CPU write hit
CPU read hit

CPU write

P
la

ce
 w

ri
te

 m
is

s
o

n
 b

u
s

Pla
ce

 in
va

lid
at

e

on b
usCPU w

rit
e

Place read miss on bus
CPU read

Write miss or invalidate
for this block

Write miss for
this block

Read miss

Invalidate for this block

W
rite m

iss for this block

W
riteback block; abort m

em
ory access

CPU write
Place invalidate on bus

Writeback block; abort
memory access

W
ri

te
b

ac
k

b
lo

ck
;

ab
o

rt
 m

em
o

r y
 a

cc
es

s

Owned

Invalid Shared

CPU read hit

CPU read hit

L-32 � Appendix L Solutions to Case Study Exercises

b. P1: read 120Read miss, satisfied in memory
P15: read 120 Read hit
P0: read 120Read miss, satisfied in memory
Both protocols: 100 + 0 + 100 = 200 stall cycles

c. P0: write 120 <-- 80 Write miss, invalidates P15
P15: read 120 Read miss, P0’s cache
P0: read 120 Read hit
Both protocols: 100 + 70 + 10 + 0 = 180 stall cycles

d. P0: write 108 <-- 88 Send invalidate, invalidate P15
P15: read 108 Read miss, P0’s cache
P0: write 108 <-- 98 Send invalidate, invalidate P15
Both protocols: 15 + 70 + 10 + 15 = 110 stall cycles

4.5 See Figure L.28.

This version of the MESI protocol does not supply data in the E state. Some ver-
sions do.

4.6 a. p0: read 100 Read miss, satisfied in memory, no sharers
MSI: S, MESI: E

p0: write 100 <-- 40 MSI: send invalidate, MESI: silent transition
from E to M

MSI: 100 + 15 = 115 stall cycles
MESI: 100 + 0 = 100 stall cycles

Figure L.28 Diagram for a MESI protocol.

Modified

CPU write hit
CPU read hit

C
P

U
 w

rit
e

P
la

ce
 w

ri
te

 m
is

s
o

n
 b

u
s

CPU w
rit

e

Pla
ce

 in
va

lid
at

e

on b
us

Place read miss on bus
CPU read, other shared block

Write miss or invalidate
for this block

CPU write hit

W
rit

e
m

is
s

fo
r

th
is

 b
lo

ck
W

ri
te

b
ac

k
b

lo
ck

;
ab

o
rt

 m
em

o
r y

 a
cc

es
s

W
rit

eb
ac

k
blo

ck
;

ab
ort

m
em

ory

ac
ce

ss

Rea
d

m
iss

Excl.

Invalid Shared

CPU read hit

CPU read hit

R
ea

d
m

is
s

Place read m
iss on bus

CPU read, no shares

W
rite m

iss or invalidate for this block

L.4 Chapter 4 Solutions � L-33

b. p0: read 120 Read miss, satisfied in memory, sharers both to S
p0: write 120 <-- 60 Both send invalidates
Both: 100 + 15 = 115 stall cycles

c. p0: read 100 Read miss, satisfied in memory, no sharers
MSI: S, MESI: E

p0: read 120 Read miss, memory, silently replace 120 from S or E
Both: 100 + 100 = 200 stall cycles, silent replacement from E

d. p0: read 100 Read miss, satisfied in memory, no sharers
MSI: S, MESI: E

p1: write 100 <-- 60 Write miss, satisfied in memory regardless of
protocol

Both: 100 + 100 = 200 stall cycles, don’t supply data in E state (some proto-
cols do)

e. p0: read 100 Read miss, satisfied in memory, no sharers
MSI: S, MESI: E

p0: write 100 <-- 60 MSI: send invalidate, MESI: silent transition
from E to M

p1: write 100 <-- 40 Write miss, P0’s cache, writeback data to
memory

MSI: 100 + 15 + 70 + 10 = 195 stall cycles
MESI: 100 + 0 + 70 + 10 = 180 stall cycles

4.7 a. Assume the processors acquire the lock in order. P0 will acquire it first, incur-
ring 100 stall cycles to retrieve the block from memory. P1 and P15 will stall
until P0’s critical section ends (ping-ponging the block back and forth) 1000
cycles later. P0 will stall for (about) 70 cycles while it fetches the block to
invalidate it; then P1 takes 70 cycles to acquire it. P1’s critical section is 1000
cycles, plus 70 to handle the write miss at release. Finally, P15 grabs the
block for a final 70 cycles of stall. So, P0 stalls for 100 cycles to acquire, 10
to give it to P1, 70 to release the lock, and a final 10 to hand it off to P1, for a
total of 190 stall cycles. P1 essentially stalls until P0 releases the lock, which
will be 100 + 1000 + 10 + 70 = 1180 cycles, plus 70 to get the lock, 10 to give
it to P15, 70 to get it back to release the lock, and a final 10 to hand it back to
P15. This is a total of 1340 stall cycles. P15 stalls until P1 hands it off the
released lock, which will be 1180 + 70 + 10 + 1000 + 70 = 2270 cycles.
Finally, P15 gets the lock 70 cycles later, so it stalls a total of 2330 cycles.

b. Test-and-test-and-set will have many fewer stall cycles than test-and-set
because it spends most of the critical section sitting in a spin loop (which
while useless, is not defined as a stall cycle). Using the analysis below for the
bus transactions, the stall cycles will be 3 read memory misses (300), 1
upgrade (15) and 1 write miss to a cache (70 + 10) and 1 write miss to mem-
ory (100), 1 read cache miss to cache (70 + 10), 1 write miss to memory
(100), 1 read miss to cache and 1 read miss to memory (70 + 10 + 100), fol-
lowed by an upgrade (15) and a write miss to cache (70 + 10), and finally a

L-34 � Appendix L Solutions to Case Study Exercises

write miss to cache (70 + 10) followed by a read miss to cache (70 + 10) and
an upgrade (15). So approximately 1125 cycles total.

c. Approximately 19 bus transactions. The first processor to win arbitration for
the bus gets the block on its first try (1); the other two ping-pong the block
back and forth during the critical section. Because the latency is 70 cycles,
this will occur about 14 times (14). The first processor does a write to release
the lock, causing another bus transaction (1), and the second processor does a
transaction to perform its test and set (1). The last processor gets the block (1)
and spins on it until the second processor releases it (1). Finally the last pro-
cessor grabs the block (1).

d. Approximately 15 bus transactions. Assume processors acquire the lock in
order. All three processors do a test, causing a read miss, then a test and set,
causing the first processor to upgrade and the other two to write miss (6). The
losers sit in the test loop, and one of them needs to get back a shared block
first (1). When the first processor releases the lock, it takes a write miss (1)
and then the two losers take read misses (2). Both have their test succeed, so
the new winner does an upgrade and the new loser takes a write miss (2). The
loser spins on an exclusive block until the winner releases the lock (1). The
loser first tests the block (1) and then test-and-sets it, which requires an
upgrade (1).

Case Study 2: A Snooping Protocol for a Switched Network

4.8 a. P0: read 120 Read miss, service in memory
P0: I --> ISAD --> ISD --> S

b. P0: write 120 <-- 80 Write miss, service in memory, invalidates P15
P0: I --> IMAD --> IMD --> M
P15: S --> I

c. P15: write 120 <-- 80 Write to S block, send invalidate
P15: S --> SMA --> M

d. P1: read 110 Read to I block, serviced from P0’s cache
P1: I --> ISAD --> ISD --> S
P0: M --> S

e. P0: write 108 <-- 48 Write to S block, send invalidate, invalidate P15
P0: S --> SMA --> M
P15: S --> I

f. P0: write 130 <-- 78 Replace block in M, and write miss to block,
serviced in memory

P0.110: M --> MIA --> I
P0.130: I --> IMAD --> IMD --> M

L.4 Chapter 4 Solutions � L-35

g. P15: write 130 <-- 78 Write miss, serviced in memory
P15: I --> IMAD --> IMD --> M

4.9 a. P0: read 120 Read miss, service in memory
P1: read 120 Read miss, service in memory
P0: I --> ISAD --> ISD --> S
P1: I --> ISAD --> ISD --> S

b. P0: read 120 Read miss, service in memory
P1: write 120 <-- 80 Read miss, service in memory, invalidate P0
P0: I --> ISAD --> ISD --> S --> I (note that P0 stalls the address network until
the data arrives since it cannot respond yet)
P1: I --> IMAD --> IMD --> M

c. P0: write 120 <-- 80 Write miss, service in memory
P1: read 120 Read miss, service in P0’s cacheP0: I -->
IMAD --> IMD --> M --> S (note that P0 stalls the address network until the
data arrives since it cannot respond yet)
P1: I --> ISAD --> ISD --> S

d. P0: write 120 <-- 80 Write miss, service in memory
P1: write 120 <-- 90 Write miss, service in P0’s cache
P0: I --> IMAD --> IMD --> M --> I (note that P0 stalls the address network
until the data arrives since it cannot respond yet)
P1: I --> IMAD --> IMD --> M

e. P0: replace 110 Write back M block
P1: read 110 Read miss, serviced in memory since P0 wins the race
P0: M --> MIA --> I
P1: I --> ISAD --> ISD --> S

f. P1: write 110 <-- 80 Write miss, service in P0’s cache
P0: replace 110 Write back M block aborted since P1’s GetM

wins the race
P1: I --> IMAD --> IMD --> M
P0: M --> MIA --> IIA --> I

g. P1: read 110 Read miss, service in P0’s cache
P0: replace 110 Write back M block aborted since P1’s GetM wins the

race
P1: I --> ISAD --> ISD --> S
P0: M --> MIA --> IIA --> I

4.10 a. P0: read 120 Read miss, service in memory
P0.latency: Lsend_req + Lreq_msg + Lread_memory + Ldata_msg +
Lrcv_data = 4 + 8 + 100 + 30 + 15 = 157
P0.occupancy: Osend_req + Orcv_data = 1 + 4 = 5
Mem.occupancy: Oread_memory = 20

L-36 � Appendix L Solutions to Case Study Exercises

b. P0: write 120 <-- 80 Write miss, service in memory
P0.latency: Lsend_req + Lreq_msg + Lread_memory + Ldata_msg +
Lrcv_data = 4 + 8 + 100 + 30 + 15 = 157
P0.occupancy: Osend_req + Orcv_data = 1 + 4 = 5
Mem.occupancy: Oread_memory = 20

c. P15: write 120 <-- 80 Write to S block, send invalidate
P15.latency: Lsend_req
4 cycles
P15.occupancy: Osend_req = 1

d. P1: read 110 Read miss, service in P0’s cache
P1.latency: Lsend_req + Lreq_msg + Lsend_data + Ldata_msg + Lrcv_data
= 4 + 8 + 20 + 30 + 15 = 78
P1.occupancy: Osend_req + Orcv_data = 1 + 4 = 5
P0.occupancy: Osend_data = 4

e. P0: read 120 Read miss, service in memory
P15: read 128 Read miss, service in P1’s cache, serialize at address

network
P0.latency: Lsend_req + Lreq_msg + Lread_memory + Ldata_msg +
Lrcv_data = 4 + 8 + 100 + 30 + 15 = 157
P0.occupancy: Osend_req + Orcv_data = 1 + 4 = 5
Mem.occupancy: Oread_memory = 20
P15.latency: Oreq_msg + Lsend_req + Lreq_msg + Lsend_data + Ldata_msg
+ Lrcv_data = 1 + 4 + 8 + 20 + 30 + 15 = 77
P15.occupancy: Osend_req + Orcv_data = 1 + 4 = 5
P1.occupancy: Osend_data = 4

f. P0: read 100 Read miss, service in memory
P1: write 110 <-- 78 Write miss, service in P0’s cache
P0.latency: Lsend_req + Lreq_msg + Lread_memory + Ldata_msg +
Lrcv_data = 4 + 8 + 100 + 30 + 15 =157
P0.occupancy: Osend_req + Osend_data + Orcv_data = 1 + 4 + 4 = 9
Mem.occupancy: Oread_memory = 20
P1.latency: Oreq_msg + Lsend_req + Lreg_msg + Lsend_data + Ldata_msg
+ Lrev_data = 1 + 4 + 8 + 20 + 30 + 15 = 78
P1.occupancy: Osend_req + Orev_data = 1 + 4 = 5

g. P0: write 100 <-- 28 Write miss, service in memory
P1: write 100 <-- 48 Write miss, service in P0’s cache (when it

gets it)
P0.latency: Lsend_req + Lreq_msg + Lread_memory + Ldata_msg +
Lrcv_data = 4 + 8 + 100 + 30 + 15 = 157
P0.occupancy: Osend_req + Orcv_data + Osend_data = 1 + 4 + 4 = 9
Mem.occupancy: Oread_memory = 20
P1.latency: (Lsend_req + Lreq_msg + Lread_memory + Ldata_msg +
Lrcv_data) + Lsend_data + Ldata_msg + Lrcv_data = 157 + 20 +
30 + 15 = 222
P1.occupancy: Osend_req + Orcv_data = 1 + 4 = 5

L.4 Chapter 4 Solutions � L-37

4.11 a. See Figure L.29.

b. P1: read 110 Read miss, P0 responds with data to P1 and memory
P15: read 110 Read miss, satisfied from memory

P1’s read miss will force P0 to respond with data both to P1 and to memory
and then transition to state S. The memory must receive the data and respond
to all future requests. Because the address network and data network are not
synchronized with each other, the memory may receive P1’s GetS message or
P0’s Data message in either order. If it receives the data first, then it transi-
tions to MSA and waits for P1’s GetS to complete the transition to S. Thus
P15’s GetS will find the block in state S in memory. The trickier case, which
actually occurs much more frequently, occurs when P1’s GetS message
arrives before the Data. This causes the memory to transition to MSD, to
await the data. If P15’s message also arrives before the data, the memory con-
troller cannot respond (since it doesn’t have the data). Instead, it must block
the request until the data arrives (denoted by the ‘z’ in the protocol).

State GetS GetM Data

S send Data/S send Data/M err

M -/MSD — save Data/MSA

MSA -/S — err

MSD z z save Data/S

Figure L.29 Table to specify the memory controller protocol.

L-38 � Appendix L Solutions to Case Study Exercises

4.12 See Figure L.30.

4.13 The Exclusive state (E) combines properties of Modified (M) and Shared (S). The
E state allows silent upgrades to M, allowing the processor to write the block
without communicating this fact to memory. It also allows silent downgrades to I,
allowing the processor to discard its copy with notifying memory. The memory
must have a way of inferring either of these transitions. In a simple bus-based
system, this is typically done by having two wired-or signals, Shared and Owned,
that are driven by the caches and monitored by caches and memory. If a node
makes a request (e.g., GetS), the memory monitors the Owned signal to see if it
should respond or not. Similarly, if no node asserts Shared, the requesting node
knows that no other caches have copies, and it can set the state to E. In a switched

State Read Write
Replace-
ment OwnReq Other GetS Other GetM

Other
Inv

Other
PutM Data

I send GetS/
ISAD

send GetM/
IMAD

error error — — — — error

S do Read send Inv/
SMA

I error — I I — error

O do Read send Inv
OMA

send
PutM/MIA

error send Data/O send Data/I I — error

M do Read do Write send
PutM/MIA

error send Data/S send Data/I — — error

ISAD z z z ISD — — — — save Data
/ISA

IMAD z z z IMD — — — — save
Data/IMA

ISA z z z do Read/S — — — — error

IMA z z z do Write/M — — — — error

SMA z z z M — IIA IIA — error

OMA z z z M send Data/
OMA

send Data/IIA IIA — error

MIA z z z send Data/I send Data/
MIA

send Data/IIA — — error

IIA z z z I — — — — error

ISD z z z error — z — — save
Data, do
Read/S

IMD z z z error z — — — save Data,
do Write/M

Figure L.30 Solution to Exercise 4.12.

L.4 Chapter 4 Solutions � L-39

protocol, the pipelined nature of the interconnect makes it more difficult (but not
impossible) to implement the Shared and Owned.

4.14 a. P0: write 110 <-- 80 Hit in P0’s cache, no stall cycles for either TSO
or SC

P0: read 108 Hit in P0’s cache, no stall cycles for either TSO
or SC

b. P0: write 100 <-- 80 Miss, TSO satisfies write in write buffer (0
stall cycles) SC must wait until it receives the
data (157 stall cycles)

P0: read 108Hit, but must wait for preceding operation:
TSO = 0, SC = 157

c. P0: write 110 <-- 80 Hit in P0’s cache, no stall cycles for either
TSO or SC

P0: write 100 <-- 90 Miss, TSO satisfies write in write buffer
(0 stall cycles)
SC must wait until it receives the data
(157 stall cycles)

d. P0: write 100 <-- 80 Miss, TSO satisfies write in write buffer
(0 stall cycles)
SC must wait until it receives the data
(157 stall cycles)

P0: write 110 <-- 90 Hit, but must wait for preceding operation:
TSO = 0, SC = 157

4.15 a. The default protocol handles a write miss in Lsend_req + Lreq_msg +
Lread_memory + Ldata_msg + Lrcv_data = 4 + 8 + 100 + 30 + 15 = 157 stall
cycles. The optimization allows the write to be retired immediately after the
node sees its own request message: Lsend_req + Lreq_msg = 4 + 8 = 12 stall
cycles. Since all memory stalls directly stall an in-order core, this is an impor-
tant optimization.

b. The same analysis holds for the out-of-order core. The difference is that the
out-of-order core has better latency tolerance, so the impact will be reduced.
Nonetheless, even an out-of-order core has trouble hiding long memory laten-
cies.

Case Study 3: Simple Directory-Based Coherence

4.16 a. P0: read 100
P0.B0: (S, 100, 00 00)
M.100: (DS, {P0}, 00 00)

b. P0: read 128
P0.B1: (S, 128, 00 68)
P1.B1: (S, 128, 00 68)
M.128: (DS, {P0,P1}, 00 68)

L-40 � Appendix L Solutions to Case Study Exercises

c. P0: write 128 <-- 78
P0.B1: (M, 128, 00 78)
P1.B1: (I, 128, 00 68)
M.128: (DM, {P0}, 00 20)
Memory is not updated on a write to a block that is M in another cache.

d. P0: read 120
P0.B0: (S, 120, 00 20)
M.120: (DS, {P0,P15}, 00 20)

e. P0: read 120
P1: read 120
P0.B0: (S, 120, 00 20)
P1.B0: (S, 120, 00 20)
M.120: (DS, {P0,P1,P15}, 00 20)

f. P0: read 120
P1: write 120 <-- 80
P0.B0: (I, 120, 00 20)
P1.B0: (M, 120, 00 80)
P15.B0: (I, 120, 00 20)
M.120: (DM, {P1}, 00 20)

g. P0: write 120 <-- 80
P1: read 120
P0.B0: (S, 120, 00 80)
P1.B0: (S, 120, 00 80)
P15.B0: (I, 120, 00 20)
M.120: (DS, {P0,P1}, 00 20)

h. P0: write 120 <-- 80
P1: write 120 <-- 90
P0.B0: (I, 120, 00 80)
P1.B0: (M, 120, 00 90)
P15.B0: (I, 120, 00 20)
M.120: (DM, {P1}, 00 20)
Memory is not updated on a write to a block that is M in another cache.

4.17 a. P0: write 100 <-- 80 No messages, hits in P0’s cache

b. P0: write 108 <-- 88 Send invalidate to P15

c. P0: write 118 <-- 90 Send invalidate to P1

d. P1: write 128 <-- 98 Send fetch/invalidate to P1

L.4 Chapter 4 Solutions � L-41

4.18 See Figures L.31 and L.32.

Figure L.31 Cache states.

Modified

CPU write hit
CPU read hit

S
en

d
 w

ri
te

 m
is

s
m

es
sa

g
e

CPU w
rit

e

Sen
d in

va
lid

at
e

m
es

sa
ge

Send read message
CPU read

Invalidate

CPU write

CPU write miss
Write data back
Write miss

CPU write
Send invalidate message

Read miss
Send data

F
et

ch
 in

va
lid

at
e

W
ri

te
 d

at
a

b
ac

k

Fe
tch

W
rit

e
dat

a
bac

k

Owned

Invalid Shared

CPU read hit

CPU read miss
CPU write miss
Write data back
Read miss

CPU read miss
Read miss

CPU read hit

W
rite data back

Fetch invalidate

Invalidate

L-42 � Appendix L Solutions to Case Study Exercises

4.19 The Exclusive state (E) combines properties of Modified (M) and Shared (S). The
E state allows silent upgrades to M, allowing the processor to write the block
without communicating this fact to memory. It also allows silent downgrades to I,
allowing the processor to discard its copy with notifying memory. The memory
must have a way of inferring either of these transitions. In a directory-based sys-
tem, this is typically done by having the directory assume that the node is in state
M and forwarding all misses to that node. If a node has silently downgraded to I,
then it sends a NACK (Negative Acknowledgment) back to the directory, which
then infers that the downgrade occurred. However, this results in a race with other
messages, which can cause other problems.

Case Study 4: Advanced Directory Protocol

4.20 a. P0: read 100
P0: I --> ISD --> S Dir: DI --> DS {P0}

b. P0: read 120
P0: I --> ISD --> S Dir: DS {P15} --> DS {P0,P15}

Figure L.32 Directory states.

Modified

Write miss
Fetch invalidate
Data value response
Sharers = {P}

W
rit

e
m

is
s

D
at

a
va

lu
e

re
p

ly
S

h
ar

er
s

=
{P

}

W
rit

e
m

iss

Sen
d in

va
lid

at
e

m
es

sa
ge

to
 s

har
er

s

Dat
a

va
lu

e
re

ply

Shar
er

s
=

{P
}

Data value reply,
Sharers = {P}

Read miss

Write miss
Fetch invalidate
Data value response
Sharers = {P}

Read miss
Fetch; Data value reply
Sharers = sharers + {P}

D
at

a
w

rit
e

ba
ck

S
h

ar
er

s
=

{}

D
at

a
w

rit
e

ba
ck

S
h

ar
er

s
=

sh
ar

er
s

–
{P

}

Owned

Invalid Shared

Read miss
Fetch
Data value response
Sharers = sharers + {P}

Read miss
Data value reply
Sharers = sharers + {P}

L.4 Chapter 4 Solutions � L-43

c. P0: write 120 <-- 80
P0: I --> IMAD --> IMA --> M
P15: S --> I Dir: DS {P15} --> DM {P0}

d. P15: write 120 <-- 80
P15: S --> IMAD --> IMA --> M
Dir: DS {P15} --> DM {P15}

e. P1: read 110
P1: I --> ISD --> S
P0: M --> MSA --> S
Dir: DM {P0} --> DS {P0,P1}

f. P0: write 108 <-- 48
P0: S --> IMAD --> IMA --> M
P15: S --> I
Dir: DS {P0,P15} --> DM {P0}

4.21 a. P0: read 120
P1: read 120
P0: I --> ISD --> S
P1: I --> ISD --> S
Dir: DS {P15} --> DS {P0,P15} --> DS {P0,P1,P15}

b. P0: read 120
P1: write 120 <-- 80
P0: I --> ISD --> S --> I
P1: I --> IMAD --> IMA --> M
P15: S --> I
Dir: DS {P15} --> DS {P0,P15} --> DM {P1}

c. P0: write 120
P1: read 120
P0: I --> IMAD --> IMA --> M --> MSA --> S
P1: I --> ISD --> ISID --> I (GetM arrives at directory first, so INV arrives in
ISD)
P15: S --> I
Dir: DS {P15} --> DM {P0} --> DMSD {P0},{P1} --> DS {P0,P1}

d. P0: write 120 <-- 80
P1: write 120 <-- 90
P0: I --> IMAD --> IMA --> M --> I
P1: I --> IMAD --> IMA --> M
P15: S --> Dir: DS {P15} --> DM {P0} --> DM {P1}

e. P0: replace 110
P1: read 110
P0: M --> MIA --> P1: I --> ISD --> S
Dir: DM {P0} --> DI --> DS {P1}

L-44 � Appendix L Solutions to Case Study Exercises

f. P1: write 110 <-- 80
P0: replace 110
P0: M --> MIA --> P1: I --> IMAD --> IMA --> Dir: DM {P0} --> DM {P1}

g. P1: read 110
P0: replace 110
P0: M --> MIA --> MIA --> P1: I --> IMAD --> IMA --> Dir: DM {P0} -->
DMSD{P0},{P1} --> DS {P1}

4.22 a. P0: read 100 Miss, satisfied in memory
P0.latency: Lsend_msg + Lreq_msg + Lread_memory + Ldata_msg +
Lrcv_data = 6 + 15 + 100 + 30 + 15 = 166

b. P0: read 128 Miss, satisfied in P1’s cache
P0.latency: Lsend_msg + Lreq_msg + Lsend_msg + Lreq_msg + Lsend_data
+ Ldata_msg + Lrcv_data = 6 + 15 + 6 + 15 + 20 + 30 + 15 = 107

c. P0: write 128 <-- 68 Miss, satisfied in P1’s cache
P0.latency: Lsend_msg + Lreq_msg + Lsend_msg + Lreq_msg + Lsend_data
+ Ldata_msg + Lrcv_data = 6 + 15 + 6 + 15 + 20 + 30 + 15 = 107

d. P0: write 120 <-- 50 Miss, invalidate P15’s cache
P0.latency: Lsend_msg + Lreq_msg + Lread_memory + max(Linv +
Lreq_msg + Lsend_msg + Lreq_msg, Ldata_msg + Lrcv_data) + Lack = 6 +
15 + 100 + max(1 + 15 + 6 + 15, 30 + 15) + 4 = 125 + max(37,45) = 170

e. P0: write 108 <-- 80 Write to S block, downgrade to I and send GetM
P0.latency: Lsend_msg + Lreq_msg + Lread_memory + max(Linv +
Lreq_msg + Lsend_msg + Lreq_msg, Ldata_msg + Lrcv_data) + Lack = 6 +
15 + 100 + max(1 + 15 + 6 + 15, 30 + 15) + 4 = 125 + max(37,45) = 170

4.23 All protocols must ensure forward progress, even under worst-case memory
access patterns. It is crucial that the protocol implementation guarantee (at least
with a probabilistic argument) that a processor will be able to perform at least one
memory operation each time it completes a cache miss. Otherwise, starvation
might result. Consider the simple spin lock code:

tas: DADDUI R2, R0, #1
lockit: EXCH R2, 0(R1)

BNEZ R2, lockit

If all processors are spinning on the same loop, they will all repeatedly issue
GetM messages. If a processor is not guaranteed to be able to perform at least one
instruction, then each could steal the block from the other repeatedly. In the worst
case, no processor could ever successfully perform the exchange.

4.24 a. The MSA state is essentially a “transient O” because it allows the processor to
read the data and it will respond to GetShared and GetModified requests from
other processors. It is transient, and not a real O state, because memory will
send the PutM_Ack and take responsibility for future requests.

L.4 Chapter 4 Solutions � L-45

b. See Figures L.33 and L.34.

State Read Write
Replace-
ment INV

Forwarded_
GetS

Forwarded_
GetM

PutM
_Ack Data Last ACK

I send
GetS/IS

send
GetM/IM

error send
Ack/I

error error error error error

S do Read send
GetM/IM

I send
Ack/I

error error error error error

O do Read send
GetM/OM

send
PutM/OI

error send Data send Data/I error — —

M do Read do Write send
PutM/MI

error send Data/O send Data/I error error error

IS z z z send
Ack/ISI

error error error save
Data, do
Read/S

error

ISI z z z send Ack error error error save
Data, do
Read/I

error

IM z z z send Ack IMO IMIA error save Data do Write/M

IMI z z z error error error error save Data do Write,
send Data/I

IMO z z z send
Ack/IMI

— IMOI error save Data do Write,
send
Data/O

IMOI z z z error error error error save Data do Write,
send
Data/I

OI z z z error send Data send Data /I error error

MI z z z error send Data send Data /I error error

OM z z z error send Data send Data/IM error save Data do Write/M

Figure L.33 Directory protocol cache controller transitions.

L-46 � Appendix L Solutions to Case Study Exercises

4.25 a. P1: read 110
P15: write 110 <-- 90

In this problem, both P1 and P15 miss and send requests that race to the
directory. Assuming that P1’s GetS request arrives first, the directory will for-
ward P1’s GetS to P0, followed shortly afterwards by P15’s GetM. If the net-
work maintains point-to-point order, then P0 will see the requests in the right
order and the protocol will work as expected. However, if the forwarded
requests arrive out of order, then the GetX will force P0 to state I, causing it
to detect an error when P1’s forwarded GetS arrives.

b. P1: read 110
P0: replace 110

P1’s GetS arrives at the directory and is forwarded to P0 before P0’s PutM
message arrives at the directory and sends the PutM_Ack. However, if the
PutM_Ack arrives at P0 out of order (i.e., before the forwarded GetS), then
this will cause P0 to transition to state I. In this case, the forwarded GetS will
be treated as an error condition.

Case Study 1: Optimizing Cache Performance via Simple
Hardware

5.1 a. The 2-way cache has an access time of 0.91 ns, the 4-way has an access time
of 0.90 ns, and the direct-mapped is 0.59 ns. (Access times can vary depend-
ing on how the cache is broken down into subarrays by CACTI, so sometimes
the results are counterintuitive.) Thus the 2-way takes 54% more time than
the direct-mapped, while the 4-way takes 53% more time than the direct-
mapped cache.

State GetS GetM
PutM
(owner)

PutM
(nonowner)

DI send Data, add to
sharers/DS

send Data, clear
sharers, set owner/
DM

error send PutM_Ack

DS send Data, add to
sharers

send INVs to sharers,
clear sharers, set
owner, send Data/DM

error send PutM_Ack

DO forward GetS, add to
sharers

forward GetM, send
INVs to sharers, clear
sharers, set owner/
DM

save Data, send
PutM_Ack/DS

send PutM_Ack

DM forward GetS, add to
requester and owner
to sharers/DO

forward GetM, send
INVs to sharers, clear
sharers, set owner

save Data, send
PutM_Ack/DI

send PutM_Ack

Figure L.34 Directory controller transitions.

L.5 Chapter 5 Solutions

L.5 Chapter 5 Solutions � L-47

b. The access time increases from 0.89 ns to 0.91 ns to 0.96 ns when going from
16 KB to 32 KB to 64 KB, so the relative access times are 2.2% greater for
the 32 KB and 7.8% greater for the 64 KB.

c. Looking at 2-way set-associative caches with 32 byte blocks, an 8 KB cache
has an access time of 0.74 ns, while a 64 KB cache has an access time of 1.06
ns. The larger cache is 8 times larger but has a 43% larger access time. This
growth is between square root and logarithmic, but closer to log.

d. The current version of CACTI states that 16 KB 8-way set-associative caches
with 64 byte blocks have an access time of 0.88 ns. This has the lowest miss
rate for 16 KB caches, except for fully associative caches, which would have
an access time greater than 0.90 ns.

5.2 a. The average memory access time of the current cache is 0.0056 × 20 + (1 –
0.0056) = 1.11 cycles. The Average Memory Access Time (AMAT) of the
way-predicted cache has three components: miss, hit with way prediction
correct, and hit with way prediction mispredict: 0.0056 × 20 + (0.85 × 1 + (1
– 0.85) × 2) × (1 – 0.0056) = 1.26.

b. The access time of the 32 KB 2-way cache is 0.91 ns, while the 16 KB direct-
mapped cache can be accessed in 0.56 ns. This provides 0.91/0.56 = 1.63, or
63% faster execution.

c. With a 1-cycle way misprediction penalty, AMAT is 1.26—as per part (a), but
with a 15-cycle misprediction penalty, the AMAT becomes 0.0056 × 20 +
(0.85 × 1 + (1 – 0.85) × 15) × (1 – 0.0056) = 3.19, for an increase of 3.19 –
1.26 = 1.93!

d. The serial access is 4.81 ns/3.53 ns = 1.36, or 36% slower, but dissipates
0.150 nJ/0.191 nJ = 0.79, or 21% less power.

5.3 a. The access time is 0.959 ns, while the cycle time is 0.371 ns, which could be
potentially pipelined as finely as 0.959/0.371 = 2.58 pipe stages.

b. The baseline AMAT with deeper pipelining becomes 0.00367 × 40 + (1 –
0.00367) × 1 = 1.14. Adding another cycle 20% of the time would make it
1.34.

c. There are two banks. Assuming a random distribution of addresses and a
steady stream of accesses, each access has a 50% probability of conflicting
with the previous access. The miss rate is the same as a 64 KB 2-way cache,
so the AMAT is 0.00367 × 20 + (0.50 × 1 + 0.50 × 2) × (1 – 0.00367) = 1.57
cycles.

5.4 a. With critical word first, the miss service would require 100 cycles. Without
critical word first, it would require 100 cycles for the first 16 bytes and 16
cycles for each of the next 3 16-byte blocks, or 100 + (3 × 16) = 148 cycles.

b. It depends on the contribution to AMAT of the level 1 and level 2 cache
misses and the percent reduction in miss service times provided by critical
word first and early restart. If the percentage reduction in miss service times
provided by critical word first and early restart is roughly the same for both

L-48 � Appendix L Solutions to Case Study Exercises

level 1 and level 2 miss service, then if level 1 misses contribute more to
AMAT, critical word first would likely be more important for level-1 misses.

5.5 a. 16 bytes, to match the level 2 data cache write path.

b. Assume merging write buffer entries are 16 bytes wide. Since each store can
write 4 bytes, a merging write buffer entry would fill up in 4 cycles. This is
the write speed of the level 2 cache. In contrast, a nonmerging write buffer
would take 4 cycles to write the 4 byte result of each store. This means the
merging write buffer would be 4 times faster.

Case Study 2: Optimizing Cache Performance via Advanced
Techniques

5.6 a. Each element is 8 bytes. The input and output blocks split the 16 KB cache,
so each can utilize 8 KB, or 1024 elements. Thus each block should be 32 ×
32 = 1024 elements.

b. The blocked version only has to fetch each input and output element once.
The unblocked version will have one cache miss for every 64 bytes/8 bytes =
8 row elements. Each column requires 64 bytes × 256 of storage, or 16 KB.
Thus, column elements will be replaced in the cache before they can be used
again. Hence the unblocked version will have 9 misses (1 row and 8 columns)
for every 2 in the blocked version.

c. for (i = 0; i < 256; i=i+B) {
 for (j = 0; j < 256; j=j+B) {
 for(m=0; m<B; m++) {
 for(n=0; n<B; n++) {
 output[j+n][i+m] = input[i+m][j+n];
 }
 }
 }
}

5.7 The unblocked version does not fit in the cache, so each cache block of the row
supplying 64 bytes/8 = 8 elements needs to be fetched once, while each column
element needs to be fetched once. This requires 9 prefetches for processing 8 ele-
ments. Each inner loop would require the maximum of 9 prefetches times 2
cycles = 18 cycles, and 8 loop iterations times 2 cycles for operations = 16 cycles.
The prefetches are the rate-limiting step, so the number of iterations per cycle
would be 18/8 = 2.25.

5.8 a. A sequential stream buffer would not help with fetching the column entries
for the matrix transposition. The round-robin allocation policy combined with
only two stream buffers would also mean that useful data prefetched in
response to row prefetches would be replaced before it could be used by use-
less prefetches of sequential blocks after column misses. So the performance
would be the same as without prefetching.

L.5 Chapter 5 Solutions � L-49

b. A sequential stream buffer would not help with fetching the column entries
for the matrix transposition. The round-robin allocation policy combined with
only two stream buffers would also mean that useful data prefetched in
response to row prefetches would be replaced before it could be used by use-
less prefetches of sequential blocks after column misses. So 0% are useful.

5.9 a. Solutions will vary.

b. Solutions will vary.

Case Study 3: Main Memory Technology and Optimizations

5.10 a. A 1 GB DRAM with parity or ECC effectively has 9-bit bytes and would
require 18 512 Mb DRAMs. To create 72 output bits, each one would have to
output 72/18 = 4 bits.

b. A burst length of 8 reads out 32 bytes.

c. The DDR2-667 DIMM peak bandwidth ratio is 667/533 = 1.25, or 25% for
reads to active pages.

d. This is the scenario given in the figure. This requires 12 cycles of a 266 MHz
clock, or 12 × (1/266 MHz) = 45 ns.

e. The latency to an already active bank is 8 clock cycles, versus 12 if a bank
activate is required. The access requiring a bank activate is 12/8 = 1.5, or 50%
longer.

5.11 The costs of the two systems are $130 + $800 = $930 with the DDR2-667 DIMM
and $100 + $800 = $900 with the DDR2-533 DIMM. The latency to service a
level 2 miss is 14 × (1/333 MHz) = 42 ns with the DDR2-667 DIMM and 12 × (1/
266 MHz) = 45 ns with the DDR-533 DIMM. The CPI added by the level 2
misses in the case of DDR2-667 is 0.00333 × 42 = 0.140, giving a total of 1.5 +
0.140 = 1.64. Meanwhile the CPI added by the level 2 misses for DDR2-533 is
0.00333 × 45 = 0.150, giving a total of 1.5 + 0.150 = 1.65. Thus the difference in
performance is only 1.65/1.64 = 1.006, or 0.6%, while the cost is $930/$900 =
1.033, or 3.3% greater. The cost/performance of the DDR2-667 system is 1.64 ×
930 = 1525, while the cost/performance of the DDR2-533 system is 1.65 × 900 =
1485, so the DDR2-533 system is a better value.

5.12 The cores will be executing 8 cores × 3 GHz/2.0 CPI = 12 billion instructions per
second. This will generate 12 × 0.00667 = 80 million level 2 misses per second.
With the burst length of 8, this would be 80 × 32 bytes = 2560 MB/sec.

5.13 The power required to drive the output lines is the same in both cases, but the sys-
tem built with the x4 DRAMs would require activating banks on 18 DRAMs,
versus only 9 DRAMs for the x8 parts. The page size activated on each x4 and x8
part are the same and take roughly the same activation energy. Thus, since there
are fewer DRAMs being activated in the x8 design option, it would have lower
power.

L-50 � Appendix L Solutions to Case Study Exercises

Case Study 4: Virtual Machines

5.14 a. Yes. Each application could be run on a virtual machine on the new CMP-
based server, providing the illusion it was running on its own machine with
the original operating system. Thus higher-performance hardware could host
several applications simultaneously on a single server.

b. Yes. If an application was running on a virtual machine, viruses, worms, and
spyware should only affect the virtual machine running the application and
not the entire host machine.

c. No. VMs do not generally provide higher performance, and applications with
large memory usage may have many TLB faults, which incur virtualization
overhead.

d. Yes. New virtual machines running the application can be relatively easily
created on machines not normally used for that application in order to provide
extra capacity.

e. Yes. Old versions of the operating system can be hosted on VMs running on
modern machines.

5.15 a. Programs with large amounts of I/O, programs with large working sets (and
hence many TLB faults or paging), and other programs with a large number
of system calls.

b. The slowdown above was 60% for 10%, so 30% system time would run
180% slower.

c. For pure virtualization the mean slowdown is 13.57, while for para virtualiza-
tion the mean slowdown is 5.27.

d. Fork and exec sh has the lowest overhead. They do more work than many of
the other system calls, so the overheads are relatively less.

5.16 The virtual machine running on top of another virtual machine would experience
greater slowdowns than one running directly on a host.

5.17 a. Both VT-x and SVM add a mode that intercepts the operation of privilege-
sensitive instructions and allows the correct operation to be performed.

b. AMD’s SVM provides additional support for virtualization of virtual mem-
ory, but VT-x (as of the date of the computer paper) does not yet have this
support.

Case Study 5: Putting It All Together: Highly Parallel Memory
Systems

5.18 a. There are two levels of cache.

b. The first-level cache is 32 KB and has 64-byte blocks.

c. The miss penalty is approximately 4.8 ns.

L.5 Chapter 5 Solutions � L-51

d. The first-level cache is 4-way set associative.

e. The large miss penalty to go off-chip coupled with the approximate LRU
replacement policy causes some misses when a perfect LRU policy could
hold the data in the cache.

5.19 a. Hint: Walk through memory using stores and see if you can make writes pile
up in a write buffer to see if it is write-through or write-back.

b. Hint: Instead of walking through memory using linked lists, directly walk
through memory so multiple independent memory references can be gener-
ated.

c. Hint: Try to generate as many outstanding memory references as possible,
using independent accesses.

5.20 a. Hint: First characterize the upper levels of the memory system with one copy
of the program so you can learn how to best generate a high number of inde-
pendent misses.

b. Hint: After characterizing the size and associativity of the last level of on-
chip cache, generate a large number of independent misses for the last level
of on-chip caching.

5.21 Solutions will vary.

L-52 � Appendix L Solutions to Case Study Exercises

Case Study 1: Deconstructing a Disk

6.1 The answers to this exercise can be determined from Figure L.35.

a. 2.0 ms; determined at point 3 (P3) in the graph.

b. 8.33 ms; determined at point 1 (P1) in the graph, or (more robustly) the y-axis
difference between line 1 (L1) and line 2 (L2). The simplest way to think
about this is to consider the transition from P2 to P3. At P2, the algorithm
incurs the time of a full rotation plus the minimum transfer time (worst case),
and at P3, just the minimum transfer time (best case). The difference between
the two cases is the rotation time.

c. 0.7 ms; determined by the difference between L2 and L3. When skipping
over larger distances, occasionally a head switch must take place to move us
onto a different track. Hence, these show up as small blips (on L3) just above
the baseline (L2).

d. 2.1 ms; determined by the difference between L2 and L4. Similar to above,
when a cylinder is exhausted, a switch must occur to the next one. These
show up as (larger) blips (on L4) above the baseline (L2).

e. 15 heads; determined by counting the number of head switches that occur
between the first two cylinder switches (labeled H on the graph).

Figure L.35 Results from running Skippy on Disk Alpha.

L.6 Chapter 6 Solutions

Ti
m

e
(m

s)

14

12

10

0

6

4

2

8

0

Distance (sectors)

30025020015010050

L1

P1

P2

H

P3

L4

L3

L2

L.6 Chapter 6 Solutions � L-53

6.2 The answers to this exercise can be determined from Figure L.36.

The minimal transfer time determines the y-axis value of point 3 (P3). The mini-
mal transfer time divided by the rotational latency determines the x-axis value of
point 3, as it reflects the number of sectors traversed in that time. The slope of the
lines L1 . . . L4 is determined by dividing the rotational time by the number of
sectors per track; L2 is the base line and essentially goes through the y-axis at x =
0, L3 is just a head switch time above L2, and L4 a cylinder switch time above
L2. The most difficult aspect of drawing the graph, then, is determining exactly
where each point goes. A simple algorithm that counts how many sectors have
been traversed by each skip is needed; when the total exceeds the number of sec-
tors per track, one must plot a point on the head switch line (L2). When all sur-
faces have been used, a cylinder switch must take place (L3); otherwise, each
skip simply takes a little longer rotationally and hence must stay on L1.

6.3 Solutions will vary.

Figure L.36 Results from running Skippy on Disk Beta.

Ti
m

e
(m

s)

14

12

10

0

6

4

2

8

0

Distance (sectors)

200160 18014010060 80 12020 40

L1

P1

P2

H

P3

L4
L3

L2

L-54 � Appendix L Solutions to Case Study Exercises

Case Study 2: Deconstructing a Disk Array

6.4 a. � The pattern size is detected by the highest time, which first occurs at 64
KB. At that point, all requests are directed to the same disk, and hence
take longer.

� The 0.4 time corresponds to requests getting spread across all disks; 0.8 to
half the disks getting utilized; and 1.6 to just a single disk.

� We know that we are utilizing a single disk at 1.6 s and with a pattern of
64 KB. Further, we know that half the disks are utilized with a pattern size
of 32 KB and achieve twice the bandwidth of a single disk; hence, we are
using twice a single disk’s bandwidth or two disks. If half the disks is two,
then we must have four disks.

� The chunk size is 16 KB. With four disks and a repeating pattern every 64
KB, simple division tells us how much data must reside on each disk.

b. Your graph should look similar to Figure 6.26, with the following differences:
the peaks would be at 1.25, 2.5, and 5 s (instead of 0.4, 0.8, and 1.6); these
numbers correspond to taking 1000 requests that complete in 5 ms each and
spreading them across 4, 2, and 1 drive, respectively. Because the chunk size
is smaller, though, the y-axis blips would occur sooner, at 16 KB (2.5 s at half
the pattern size) and 32 KB (5.0 s at the full pattern).

6.5 a. � 8 KB. We see the dips every 8 KB, which corresponds to the requests get-
ting spread across two drives (neighbors) instead of landing on the same
disk.

� Once again, they reflect the difference in parallelism; the higher time im-
plies requests directed to one disk, the lower time means two.

b. The dips would occur every 12 KB instead of every 8 KB. The times would
be different as well, with a low time of 2.5 ms (when 1000 requests get spread
across 2 disks, and each take 5 ms) and a high time of 5 ms (when all 1000
end up on the same disk).

6.6 a. 12 chunks. Divide the pattern size by chunk size.

b. The 0th chunk and the 11th, the 1st and 10th, the 2nd and 9th, and so on.

c. 6 disks. There are 12 chunks, and each chunk seems to be on the same disk as
one other chunk. Hence, 12 divided by 2 gives us 6 disks.

d. Start at the left, numbering chunks 0, 1, 2, . . . , 5 across disks; then go to the
next row, and instead number 11, 10, 9, . . . , 6. This pattern aligns the chunks
correctly in a pairwise fashion.

6.7 Your graph should be 12 by 12, and the following chunk pairs would conflict
(and hence have lighter shading): (0, 0), (1, 1), . . . , (11, 11), which fills the diag-
onal, (0, 3), (0, 7), (1, 4), (1, 9), (2, 7), (2, 10), (3, 5), (3, 8), (3, 11), and all pair-
wise complements (3, 0), (7, 0), and so on.

L.6 Chapter 6 Solutions � L-55

Case Study 3: RAID Reconstruction

6.8 RAID 4 allocates parity blocks to a single disk.

6.9 Assuming independent failures for the six disks and an MTTF for each disk of
1.2 M hours (shown in Figure 6.3), the expected time until a failure is

6.10 a. To perform reconstruction, the RAID 4 array must read the (data or parity)
blocks from the five working disks and write (the data or parity blocks) to the
reconstructed disk. Note that the reads of stripe i + 1 can proceed in parallel
with the write to stripe i.

b. If reads and writes are proceeding in parallel (and we ignore the fact that the
reads to the first stripe and the writes to the last stripe are not overlapped) and
the bus is the limiting factor with 320 MB/sec, then the bandwidth delivered
to/from each disk is

Reading or writing 37 GB at 53 MB/sec requires time

= 715 seconds = 11.9 minutes = 0.198 hours.

c. With a 10 MB/sec limit, the bandwidth delivered to/from each disk is

Reading or writing 37 GB at 1.67 MB/sec requires time

 = 22,733 seconds = 379 minutes = 6.3 hours

6.11 a. Probability, x, of a second failure during offline reconstruction:

b.

c. Probability, x, of a second failure during on-line reconstruction:

1.2 M hours
6

----------------------------- 200,000 hours=

320 MB/sec
6

----------------------------- 53 MB/sec=

37 GB
53 MB/sec

10 MB/sec
6

-------------------------- 1.67 MB/sec=

37 GB
1.67 MB/sec

5
1.2 M hours
----------------------------- x

0.198 hours
----------------------------=

x 8 × 10–7=

Offine MTDL 200,000 hours

8 × 10–7
---------------------------------- 2.5 × 1011= = hours

5
1.2 M hours
----------------------------- x

6.3 hours
----------------------=

x 2.63 × 10–5=

L-56 � Appendix L Solutions to Case Study Exercises

d.

6.12 Assume that the bus does not limit the IOPS for a random workload. With offline
reconstruction, the performance during reconstruction is 0.

= Performability = Probabilitynofailures × (285 IOPS × 5 disks)

 × 1425 IOPS

= 1424.9986

6.13 The performability of offline reconstruction is slightly better:

= Probabilitynofailures × 285 IOPS × 5 disks + Probability1failure × 0.70 × 285 IOPS
× 5 disks

 × 1425 IOPS + × 997.5 IOPS

= 1424.9551 + 0.0314213 = 1424.9865

6.14 To construct the missing blocks, one should first read all of the blocks from the
four available disks (that fit in main memory) in order to obtain the best sequen-
tial read bandwidth. Then, only after all of the missing blocks have been recon-
structed should those blocks be written out to the two repaired disks, to again
obtain the best sequential write bandwidth. The XOR computations can be per-
formed in the following order (note that other orderings are also possible):

Disk 0, Block 2: Reconstruction using diagonal parity.

Disk 3, Block 0: Reconstruction using row parity.

Disk 0, Block 0: Reconstruction using diagonal parity.

Disk 3, Block 3: Reconstruction using row parity.

Disk 0, Block 3: Reconstruction using diagonal parity.

Disk 3, Block 1: Reconstruction using row parity.

Disk 0, Block 1: Reconstruction using diagonal parity.

Disk 3, Block 4: Reconstruction using row parity (could have used diagonal par-
ity from the beginning as well).

Case Study 4: Performance Prediction for RAIDs

6.15 a. 5 ms

b. Utilization = = = 83.5%

c.

Online MTDL 200,000 hours

2.63 10–5⋅
---------------------------------- 7.62 × 109= = hours

1 0.198 hours
200,000 hours
----------------------------------–

 =

1 6.3 hours
200,000 hours
----------------------------------–

 =
6.3 hours

200,000 hours

Arrival rate × Service time 167 requests/sec × 5 ms

Wait time Time server= ×
Util

1 Util–
------------------ 5 ms ×

0.835
1 0.835–
---------------------- 25.3 ms= =

L.6 Chapter 6 Solutions � L-57

d.

e. Wait time + Service time = 25.3 ms + 5 ms = 30.3 ms

6.16 a. Since the data is striped across the two disks, each disk now contains only 20
GB of data; therefore, the expected service time of a request is now only 2.5
ms.

b. This system of two disks cannot be modeled as an M/M/2 queue because the
requests cannot go to either disk; instead a request must go to the particular
disk holding the requested block. Therefore, we instead model the storage
system as two independent M/M/1 queues. We assume that the request rate in
each queue is half the original rate, 83 requests/sec.

c. Utilization =

d.

e.

f. Wait time + Service time = 0.665 + 2.5 = 3.165

6.17 a. Each disk now contains the full 40 GB of data; therefore, the expected service
time of a request is again 5.0 ms.

b. Since read requests can go to either disk, we model this system as a single M/
M/2 queue.

c.

d.

e. Wait time + Service time = 1.020 + 5.0 ms = 6.020 ms

Util2

1 Util–
------------------ 4.23=

Arrival rate × Service time 83 requests/sec × 2.5 ms 21%==

Wait time Time server ×
Util

1 Util–
------------------ 2.5 ms ×

0.21
1 0.21–
------------------- 0.665 ms= = =

Util2

1 Util–
------------------ 0.212

1 0.21–
------------------- 0.056= =

Utilization Arrival rate × Service time
N servers

--- 165 requests/sec × 5 ms
2

-- 41.2%= = =

Prob 0 tasks 1 2 × 0.412()2

2 × 1 0.415–()
-------------------------------------+ 2 × 0.412()+

 =
1–

1 0.5774 0.824+ +() 1–=

2.401 1–=

Prob tasks in Q 2 × 0.412()2

2 × 1 0.412–()
-------------------------------------=

 × 2.401 1–

0.240=

Wait time Time server ×
0.240

2 1 Util–()
--------------------------=

5.0 ms ×
0.240

2 1 0.412–()
------------------------------=

1.020=

L-58 � Appendix L Solutions to Case Study Exercises

6.18 a. For a write-only workload, the requests must go to both disks. Therefore, this
system performs identically to the single disk system.

b. The answers are identical as for Exercise 6.15.

Case Study 5: I/O Subsystem Design

6.19 If reliability is not a concern, then RAID 0 gives the best capacity and perfor-
mance; with RAID 0, we waste no space for redundancy to recover from failures
and each independent disk can be used to handle a random I/O request. Larger
block sizes amortize the positioning costs, while smaller block sizes ensure that
only needed data is actually transferred; therefore, the block size should roughly
match the request size of 16 KB.

6.20 In our system, we want to purchase as many disks as possible. To best use our
budget of $28,000, we therefore maximize the number of disks, given the follow-
ing constraints:

SystemCost = CPUCost + CntrlerCost × CntrlerNum + EnclCost × EnclNum + DiskCost × DiskNum

DiskNum ≤ EnclNum × 8

DiskNum ≤ CntrlerNum × 15

28,000 = 1000 + 250 × DiskNum/15 + 2000 × DiskNum/8 + 150 × DiskNum

DiskNum =

Since the number of each component must be an integer, we choose

DiskNum = 64, CntrlerNum = 5

and

EnclNum = 8

a. Each disk can deliver 285 IOPS. The CPU is not the bottleneck and the
50,000 IOPS controller is not the bottleneck of the system (assuming 15 disks
or fewer per string). If all disks are operating concurrently on the random
requests, and the disks are the bottleneck of the system, then the storage sys-
tem can deliver 18,240 IOPS.

b. 1000 + 250 × 5 + 2000 × 8 + 150 × 64 = 27,850

Note that even though we have $150 remaining, it cannot be used for another
disk, because we do not have space in any of the enclosures.

c. 64 × 37 GB = 2.31 TB

27,000
417

---------------- 64.8=

L.6 Chapter 6 Solutions � L-59

d.

Failure rate =

= 0.0001573

MTTF =

6.21 If an enclosure or controller fails, we want to ensure that only one of the replicas
is affected; that is, each enclosure should contain a RAID 0 array and mirroring
should be performed across RAID 0 arrays, which is RAID 01. Further, to ensure
that one controller failure does not affect multiple enclosures, there should be
exactly one controller per enclosure.

6.22 Given a RAID 01 array, to keep reliability as high as possible, we want to have as
few components as possible, while meeting our capacity requirements. Given that
we must supply 1 TB of storage space and each pair of disks supplies 37 GB, we
must have 28 disk mirrors, or 56 total disks. To contain RAID 0 arrays of 56
disks, we must have 8 enclosures and 8 controllers.

a.

Failure rate =

= 0.0001597

MTTF = = 6263 hours

b. To lose data in this system, we must lose two mirrored pairs of disks before
the one is recovered (which requires 24 hours). Note that the failure of an
enclosure or a controller will not lead to permanent data loss. The expected
time before one disk fails is

 = 21,429 hours

The likelihood of the second mirrored disk failing during the 24-hour recov-
ery is

Therefore,

MTDL =

c. 28 × 37 GB = 1.01 TB

d. 1000 + 250 × 8 + 2000 × 8 + 150 × 56 = 27,400

e. A write-only workload must update both mirrors. Therefore, the IOPS is 28 ×
285 IOPS = 7980 IOPS.

1
1,000,000
------------------------ 5

1,000,000
------------------------ 5

500,000
------------------- 8

1,000,000
------------------------ 8

200,000
------------------- 8

200,000
------------------- 64

1,200,000
------------------------+ + + + + +

1
Failure rate
--------------------------- 6356 hours=

1
1,000,000
------------------------ 8

1,000,000
------------------------ 8

500,000
------------------- 8

1,000,000
------------------------ 8

200,000
------------------- 8

200,000
------------------- 56

1,200,000
------------------------+ + + + + +

1
Failure rate

1,200,000
56

1
1.2M hours
----------------------------- x

24 hours
--------------------=

x 2 × 10 5–=

2l,429 hours

2 × 10 5–
------------------------------ 1.07 × 109= hours

L-60 � Appendix L Solutions to Case Study Exercises

6.23 For reliability, we want as few components as possible; with larger disks, we are
able to use half as many disks. Therefore, our system will now contain a total of
28 disks; we will have 4 enclosures and 4 controllers, each with a string of 7
disks.

Case Study 6: Dirty Rotten Bits

6.24 a. A half full file system of 37 GB has 18.5 GB of data. We need only check-
sums to detect single errors (no correction here), and therefore need a 20-byte
MD5 for every 4 KB of each file. We don’t need to look at the file distribution
here because we know we have 18.5 GB of data in 4 KB blocks (roughly).
Hence, we have

 blocks, or 4,849,664 blocks

In terms of size, that is 92.5 MB of checksum data (20 bytes per 4 KB block).

Another way to get this: simply multiply the total data size (18.5 GB) by the

additional fractional amount that the checksum will add per block .

As a percentage, this is 0.49% of the volume (again, 20 bytes extra per data

block, or .

b. The answer here requires us to add a single parity block per file. Thus, we
have to know the number of files in the volume; more specifically, how many
files comprise an 18.5 GB volume? One way to figure this out is to assume
you have 1000 files distributed by size as per the distribution above. Then you
would have 266 1-KB files, 110 2-KB files, and so forth. By adding these up,
we can find the total size of those 1000 files: 77.9668 MB. Hence, to find how
many files are in 18.5 GB of data, just set up the following:

Solving for n, we get roughly 242,975 files. To get the total size of this, we
just multiply by the size of the parity block, 4 KB, or roughly 949.1 MB
(5.01% of the volume).

c. The file size distribution does not determine the checksum overhead. That
said, bigger blocks mean less protection but with less overhead; if the 0.5%
overhead for 20-byte checksums is too much, it is easy to increase the block
size to reduce this number. If comparing to the space cost of recovery, the
parity protection information takes up more space (by a factor of 10), so per-
haps it is easy to justify more checksum data per file.

6.25 a. With 10 GB of data, it takes you roughly 100 seconds to scan all of the data at
the 100 MB/sec rate. With 1 bit flip per GB per month, assuming a 30-day
month, you get a bit flip on average once every 3 days in your 10 GB data set.
Hence, to avoid a second bit flip corrupting another block in the same file,
you should scan every few days or so to repair the likely flipped bit. A more

18.5 GB
4 KB

20
4096

20
4096

18.5 GB
n files

-------------------- 77.9668 MB
1000 files

------------------------------=

L.6 Chapter 6 Solutions � L-61

sophisticated answer could take the file size distribution into account, but we
leave that as an exercise for someone else.

b. Because it takes 100 seconds to scan a GB (and thus detect and potentially
correct a single bit flip), if we get more than 1 bit flip every 100 seconds, we
are in trouble. Translating to bit flips per GB per month, we know that there
are 2,592,000 seconds per 30-day month, so we get roughly 2592 flips per
GB per month.

6.26 a. A 40 MB file requires one 20-byte checksum per 4 KB block and 1 parity
block. Hence, the additional write traffic is dominated by the checksums. It is
easy to calculate that 40 MB implies 10,240 blocks, which leads to 200 KB of
checksums plus a 4 KB parity block, or 204 KB of extra traffic. As a percent-
age of total traffic, this is miniscule: not quite 0.5%.

b. Now the costs go up quite a bit. For each write, we must do a “small write”
RAID-style update of the parity block, as well as update the checksum infor-
mation. An update to a particular block requires us logically to read the old
data that was in the block, the old parity, compute the new parity (using the
difference between the old and new data to derive the new parity), and then
write the new data and new parity. If the parity block is cached (let’s say this
is the case), this will generate 3 I/Os (1 read and two writes) per logical write
to the file. Hence, a workload that performs 10,000 writes will generate
30,000 total I/Os, or 117.2 MB of total traffic. In terms of extra traffic, this is
78.1 MB of extra I/O traffic. But we still need to add in checksums: 20 bytes
for each of the 10,000 writes, or roughly 0.2 MB. Thus, 78.3 MB of extra I/O
traffic is generated while writing out 10,000 4-KB random synchronous
writes (which is 39.1 MB of traffic), roughly increasing the total traffic by
200%. In this case, parity-maintenance traffic dominates.

c. First, we must figure out how much checksum data is on disk. With a 10,000-
block file, there must be 0.19 MB of checksums (roughly). Assume we read
those into memory first, and then proceed to read the file sequentially. Thus,
we get a single seek to the checksum file (4 ms), 0.19 MB read at 100 MB/sec
(1.9 ms), another seek to the beginning of the file data (4 ms), and a long
sequential read of the file (390.6 ms). Thus, the total time to read the file and
checksums is 400.5 ms, of which 5.9 ms is due to the checksums. Overall, for
sequential reads, the time penalty of checksums is small.

d. Assume that for each random read, you never have the checksum cached, and
hence you must read it from disk too. Hence, for each random read, you must
seek to the checksum (4 ms), read it from disk (negligible, just reading 20
bytes or more realistically a single block at 100 MB/sec), seek to the data
block (4 ms), and read it too (again, negligible). Hence, the total time per read
is 8 ms, and for all 10,000 reads, 80 seconds. The time penalty due to check-
sums is half of that time, or 40 seconds. Random reads, when checksums
aren’t cached, are much more costly.

6.27 Solutions may vary.

L-62 � Appendix L Solutions to Case Study Exercises

Case Study 7: Sorting Things Out

6.28 To answer this question, we must first build a model of sorting performance. We
can then plug in the numbers from the table and see what the total performance
is. To read and write the data as fast as possible: simply configure the system to
have two of the fast I/O interconnects (each rated at 320 MB/sec) and then add
disks to each bus until the bus is fully utilized (three fast disks, each rated at 110
MB/sec). Make sure the memory bus can handle this as well: because there is a
copy during reading and writing, that means that data passes across the memory
bus three times during I/O, which means the memory bus must be able to handle
three times the bandwidth of the I/O subsystem. Hence, use the fastest memory
system available here, the fast memory subsystem. For sorting, the time is deter-
mined by which is slower, the memory subsystem or the CPU (recall the problem
states that sorting 1 MB of data requires 1 MIPS of CPU power and 1 MB/sec of
memory bandwidth). Hence, pick the standard or fast CPU (memory bandwidth
limits us to 2 GB/sec already, so no real reason to pick the fast CPU here).
Assume further that we have to buy 2 GB of memory to make sure we can do this
all in memory.

a. � Standard CPU: $1,000

� Fast memory: 2 GB at $500/GB = $1000

� 2 × fast I/O interconnect: $800

� 6 × fast disks: $1800

� Total: $4600

b. � Reading: 1.6 sec

� Sorting: 0.51 sec

� Writing: 1.6 sec

� Total: 3.71 sec

c. In this system, it would have to be said that I/O is the bottleneck, as reading
and writing time dominate.

6.29 This is a bit of a search problem. Probably the easiest way to do it is to write a lit-
tle program that searches through the possibilities. The configuration we came up
with is described below, although many other similarly performing configura-
tions are possible.

a. � Standard memory (2 GB) : $400

� Slow CPU: $200

� Fast I/O + slow I/O: $450

� Standard disks (5) [on fast I/O bus]: $600

� Standard disk (1) [on slow I/O]: $120

� Total: $1770

L.6 Chapter 6 Solutions � L-63

b. � Read: 3.0 sec

� Sort: 1.024 sec

� Write: 3.0 sec

� Total: 7.024 sec

c. Once again, I/O is the bottleneck, which is good for a sorting benchmark.
Interestingly, though, the I/O is memory-bus limited—adding more disks
does not help even though the I/O bus has the potential capacity. The copying
cost of moving data in memory during I/O is the ultimate limitation.

6.30 a. We assume the disk is the bottleneck and that it is kept busy at all times.
When we read a chunk from one of the sorted runs, it takes the total of the
time to position the disk Tseek + Trotate plus the transfer time Ttransfer.

In this case, Tseek is 7 ms and Trotate is half the full rotation time, or 3 ms.
Hence, positioning time is 10 ms. The time to read in a 1 MB run is simply

or 10 ms. Hence, the total time to read in a chunk from a run is 20 ms, which
means the total time to read in all 100 runs of size 1 GB is

which is 2048 seconds. We must also remember the time to write out the runs,
which is very nearly the time to write out 100 GB at the sequential disk rate:

or 1024 seconds. Hence, the total time to perform the second pass of the sort
is 3070 seconds.

b. This basically changes the time to access each chunk from 20 ms (10 ms
positioning and 10 ms transfer) to 110 ms (10 ms positioning plus 100 ms
transfer). The time to read in all the runs is thus

or 1126.4 seconds. Hence, the total time is 2150.4 seconds.

1 MB
100 MB/sec

Data 100= 1024 MB×
Run size 1 MB=

-- Time per run 20 ms=()×

100 GB
100 MB/sec

Data 100= 1024 MB×
Run size 10 MB=

-- Time per run(× 110 ms)=

L-64 � Appendix L Solutions to Case Study Exercises

c. Peak disk efficiency would simply be transferring data sequentially the entire
time, or taking 2048 seconds to complete the merge. Thus, the efficiency of
the first case is

or 0.667. In the second case, by using larger blocks, we do much better,
achieving

or 0.95.

6.31 Solutions will vary.

2048
3070

2048
2150.4
