
Laboratory Exercises for

EITF20 Computer Architecture

Anders Ardö, Mohammad Attari

Department of Electrical and Information Technology

Lund University

November 10, 2019

Contents

1 Laboratory 1: Pipelined Processors 3

2 Laboratory 2: Advanced pipelining 15

3 Laboratory 3: Cache memory 21

4 Laboratory 4: Advanced cache; Cache coherency 29

5 Appendix: Software 37

5.1 Pipeline simulator (mipspipe2000.exe) 37

5.2 Cache simulator mips.exe 37

5.3 SimpleScalar simulator tool set 37

5.4 MatLab routines for plotting results 43

1

In the course of these labs you will run a large number of simulations, and it may be di�cult
to keep track of your results unless you maintain a lab book (hard copy or on-line). This book
should contain the description of all the simulation runs you performed, your simulation plans,
comparison of results, graphs if any etc. In addition as you will start using more detailed
simulators, the simulation time will increase. A lab-book, which documents all the simulation
runs you performed already, will help you avoid repeat runs and will save you considerable time.
The system allows you to attach an arbitrary ID to each run, as well as it saves all results within
a session (typically one lab). Use this intelligently in order to keep better track of what you have
done.

The software tools used in this laboratory are of an educational nature. In plain English
this means that one may expect all kind of problems with the tools themselves, the installation
and the assistants, because 'things can have changed since last time'. We will give you no other
guarantee than all the help we can.

Written solutions to home assignments for a lab should handed in to the lab-assistant before
the lab starts.

2

1 Laboratory 1: Pipelined Processors

NOTE! All software tools are available at http://dark.eit.lth.se/.
If prompted, use your credentials as follows:

username: Your Lucat-ID
password : Your Password

In this lab you need to use a Windows 7 virtual machine in order to run the MipsIt toolchain.
The virtual machine for Windows 7 is located in the C:\Temp folder of your local computer
(the �le MipsIt2000.vbox). If by any chance the VM �les are not there, you can copy the needed
�les (two �les) from T:\Unprotected\Masoud to the local C:\Temp. Fire up the virtual
machine (by double clicking on MipsIt2000.vbox and starting it in the VM manager), and log
into the Windows 7 running on the VM with the following:

username: User
password : P@ssw0rd

As the virtual machines are bound to the local computer, we recommend every student to
store their project �les in a directory on their home drive! In order to do this, on the desktop
you will �nd a shortcut to the Map Drives utility (that maps your student home drive to the
OS running on the VM). Please run Map Drives, and provide your Lucat credentials. Check to
make sure you have access to your home drive (H:), and use this drive to create your projects
in, so that you can have access to them regardless of what machine you are working on.

1.1 Goals

In this laboratory exercise we practice the pipelining techniques introduced during the lectures.
We start things o� with the classical pipeline to see how stalls can create the so-called bubbles
inside the pipeline. We then introduce forwarding to mitigate the e�ect of stalls on program
exectution. The next step is to move on to the more advanced ILP techniques, such as score-
boarding and the Tomasulo algorithm. To accomplish these, we will take advantage of a number
of di�erent educational tools and software especially developed to illustrate the above-mentioned
concepts.

After �nishing this laboratory exercise, you should be able to explain the basic principles of
pipelining, including the concepts of data and control hazards, and possible remedies for them,
such as forwarding and delayed branches. Finally, you should form a solid understanding for how
the instructions are used to control di�erent parts of the data path through the control unit.

1.2 Literature

Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 6th edition, Ap-
pendix C, Chapter 3
MIPS Lab Environment Reference Manual (Section A.1 in this lab-manual)
To get an in-depth understanding of the pipeline you can refer to:
Hennessy and Patterson, Computer Organization and Design MIPS Edition: The Hardware/Software
Interface, Chapter 4

3

http://dark.eit.lth.se/

1.3 Preparations

Carefully read the literature and all laboratory exercises below, and perform the home assign-
ments. Note that you must solve the home assignments, or you will not be allowed to start the
laboratory exercise.

1.3.1 Home Assignments

NOTE!Written solutions to the home assignments must be handed in to the lab assistant before
you start the lab! This applies to all of the 4 labs.

• What is a CPU (or processor)?

• What is an assembly language program?

• How does a computer execute simple machine language instructions?

• What is the relation between assembly language and machine language?

• What does the instruction 'add t0, t1, t2' do?

• What does the instruction 'beq t0, t1, Dest' do?

• How does a pipelined CPU di�er from a non-pipelined one?

• Describe hazards?

1.4 Introduction to the MipsIt Environment

The �rst experiments will be performed using MipsIt (found here: https://www.eit.lth.se/
fileadmin/eit/courses/eitf20/Labs2016/MipsICT.exe.zip) for the analysis and linkage of
programs and mipspipe2000 for the subsequent execution in the pipeline. MipsIt is a Windows
integrated development environment (IDE) for MIPS processor. Figure 1 shows the IDE in
action.

If you have used Microsoft Developer Studio/Visual C++ IDE or similar, you should have
a pretty good idea how MipsIt works. But if you are new to IDEs, you need to know what a
project is. A project is a collection of interrelated source �les that are compiled and linked to
make up an executable �le that, in our case, can be uploaded to the simulator. A project may
also include text �les for informational purposes.

1.4.1 IDE Basics

The IDE consists of the following panes (see Figure 1):

• The project view that contains a list of �les included in the project. To open a �le for
editing simply double click on it in the list.

• The output window where all the output from building the project is printed out.

Many commands also have hot-keys (like most Windows programs) to make work more
e�cient. There is also a toolbar for easier access. Some commands are currently not implemented,
and therefore are disabled.

To con�gure the IDE, go to File -> Options... . You can change COM settings, compiler
executable, paths etc. When you start MipsIt for the �rst time it will normally auto-con�gure

4

https://www.eit.lth.se/fileadmin/eit/courses/eitf20/Labs2016/MipsICT.exe.zip
https://www.eit.lth.se/fileadmin/eit/courses/eitf20/Labs2016/MipsICT.exe.zip

Figure 1: MipsIt.

correctly, except that it will complain about not being able to open the COM-port.This can
normally be ignored - just click OK.

1.4.2 Creating a Project

To create a new project follow these steps:

• Choose 'New' from the 'File' menu, and then click the Project tab (if it is not already
selected) in the resulting New dialog box shown in Figure 2.

• Select the type of project you want to create from the list. The project types are as follows:

1. Assembler - If your project will only contain assembly �les. You need to select this
choice for this lab!

2. C/Assembler - If you want a project that will contain only C or C and assembly �les.

3. C(minimal)/Assembler � Same as C/Assembler except with minimal libraries. This
will be your choice (in lab 3) if you want a project that contains C �les.

4. Enter a name for the project and change the location if desired, and then click OK.

The di�erences between the project types are the default libraries and modules that will
be included. A C/Assembler project will link with a couple of libraries, and will result in a
bigger executable (which will not work with this simulator). A C(minimal)/Assembler

5

Figure 2: The 'New' dialog window (with Project tab selected).

project will link with only the bare minimum libraries, and therefore would result in a smaller
executable compared to the one generated for C/Assembler projects (this one will work with
our simulator).

1.4.3 Adding Files to a Project

If you followed the steps for creating a new project, you should now have an empty project
created. You can now add �les to it, by either creating new �les or adding existing �les. Creating
a new �le is similar to creating a new project, except that you select the File tab (see Figure 3)
instead of the Project tab in the New dialog window. If you want to add an existing �le, choose
'Add �le...' from the Project menu, and then select the �le you want to add. In this laboratory
exercise we are only interested in assembly �les (with the extension .s).

You can use the following assembly code as a simple example to get yourself o� the ground:

1 #include <iregdef.h>

2

3 .set noreorder # Avoid reordering instructions

4 .text # Start the instructions section

5 .globl start # The label should be globally known

6

7 .ent start # The label marks an entry point

8 start:

9 add t0, t1, t2

10 nop

11 nop

12 nop

13 nop

14 .end start # The label marks an exit point

6

Figure 3: The New dialog window (with File tab selected).

1.4.4 Building

In order to prepare your project for simulation, choose Build from the Build menu or press F7.
Any �le that needs compilation will be compiled (or assembled) and �nally the executable will
be linked. Current status and results of the build process can be seen in the output window (see
Figure 1). In case you want to re-compile all �les, even those that have not been modi�ed since
the last build, choose Rebuild All from the Build menu. When the project has been successfully
built, you can move to the simulator.

1.4.5 Simulation

Now open the program mipspipe2000.exe (in theMipsIT\bin folder) to run the pipe simulator.
Choose 'Load Pipeline...' from the �le menu, open the directory called 'S-script' and choose the
�le called s.dit to load the simple version of the pipeline. Next choose 'Open' from the �le
menu or click on the Open icon in the toolbar, navigate to the directory where you created your
project, and open the �le with the .out extension located in the sub-directory named 'Objects'.

Figure 4 shows the window you should be able to see if you followed the previous steps. You
can play around with the tool to get a feel for it, before you move on to the next stage.

1.5 Arithmetic Instructions

Di�erent classes of instructions use a di�erent selection of the available components in the data
path. It is common to group such instructions into four classes: arithmetic, load, store, and
branch. Within one such class the instructions are quite similar, and it is often enough to
understand one of them well, in order to understand them all.

The arithmetic instructions are sometimes also called register instructions, because they
perform an operation with two source and one destination registers. We will now examine how
an arithmetic instruction goes through the various stages of the pipeline.

7

Figure 4: mipspipe2000 loaded with the simple pipeline.

1.5.1 Experiment 1

Go back to MipsIt and modify the assembly code to populate t1 and t2 with some distinct
values (for example by adding lui ... instructions before the add instruction). Rebuild the
project and load the program into mipspipe2000, and try to single-step through it, and observe
what happens in each stage as the instructions �ow down the pipe.

NOTE! Unfortunately you need to close mipspipe2000 and reopen it each time you load
a new program, as the tool loads the compiled program into the pipeline correctly only the �rst
time it runs.

Now answer the following questions, while describing all signals, register changes, and other
e�ects in detail:

• What happens when an instruction goes through the �rst pipeline stage, that is the IF
stage?

• What happens in the second (ID) stage?

• What happens in the third (EX) stage?

• What happens in the fourth (MEM) stage?

8

• What happens in the �fth (WB) stage?

• What do these stage names (IF, ID, EX, MEM, and WB) stand for? What tasks do they
perform?

• How many clock cycles does it take for the result of the operation to be available in the
destination register? Is the result correct? How can you modify the code to make sure it
is?

• In which pipeline stages do di�erent arithmetic instructions (for instance add and sub)
perform di�erent operations?

• One stage is not used by arithmetic instructions. Which one? Why?

1.5.2 Experiment 2

Replace the add t0, t1, t2 instruction in the program with the lw t0, 0(t1) instruction,
build, upload, and investigate the program. Note that you must add a data variable from which
to load a value.

• What happens in the di�erent pipeline stages?

• What arithmetic operation does the ALU perform? Why?

• How many clock cycles does it take for the destination register to receive its value?

• Are all the pipeline stages used? Explain.

1.5.3 Experiment 3

Now experiment with the sw t0, 4(t1) instruction, and try to store a certain value that you
have loaded into t0 inside the memory with it.

• What happens in the di�erent pipeline stages?

• What arithmetic operation does the ALU perform? Why?

• How many clock cycles does it take for the memory to receive its value?

• Are all pipeline stages used? Explain.

1.5.4 Experiment 4

Finally, investigate the use of beq t0, t1, Dest instruction, similar to what you did for the
instructions above. Note that you must add a label named Dest somewhere.

• What happens in the di�erent pipeline stages?

• What arithmetic operation does the ALU perform? Why? (There is a bug in simulator
GUI. Can you spot it?)

• How many clock cycles does the instruction take to perform the jump?

• Are all pipeline stages used? Explain!

9

1.6 A Small Program Example

Pipelining can enable processors to potentially run up to N times faster, where N is the number of
pipeline stages. However, there are several issues that make it impossible to reach this e�ciency
ceiling in practice. One such factor is that not all instructions will be able to use all the pipeline
stages. In the following experiments we will delve a bit deeper into this.

1.6.1 Experiment 1

So far we have been looking at one instruction at a time, but the real gain with using pipelining
is to be able to overlap execution of several instructions. The net e�ect is that the hardware is
busy executing several instructions at the same time. We will now investigate a small program
with several instructions and determine how it goes through the pipeline so that the di�erent
stages of the instructions are executed in parallel. Study the following code.

1 #include <iregdef.h>

2

3 .set noreorder

4 .text

5 .globl start

6

7 .ent start

8 start:

9 lui $9, 0x8002 # Load upper half of port address

10 # Lower half is filled with zeros

11 repeat:

12 lbu $8, 0x40($9) # Read from the input port

13 nop # Needed after load (is one NOP enough?)

14 sb $8, 0x50($9) # Write to the output port

15 b repeat # Repeat the read and write cycle

16 nop # Needed after branch (is one NOP enough?)

17 li $8, 0 # Clear the register

18 .end start

Build and upload the program above to the pipeline simulator and execute it step by step.
Carefully note when the instructions are launched and when their results are ready. Also note
how many instructions are in di�erent stages of their execution at the same time.

1.6.2 Experiment 2

Modify the following code by assigning distinct values to t0, t1, and t3, and then build the
program and single step through the instructions in the simulator.

1 #include <iregdef.h>

2

3 .set noreorder

4 .text

5 .globl start

6

10

7 .ent start

8 start:

9 add t2, t0, t1

10 add t4, t2, t3

11 nop

12 nop

13 nop

14 .end start

• After how many clock cycles will the destination register of the �rst add instruction (that
is t2) receive the correct result value?

• After how many clock cycles is the value of t2 needed in the second instruction?

• What is the problem here? What is this kind of hazard called?

1.6.3 Experiment 3

This kind of problem can be solved by code reordering, introduction of NOP instructions, stalling
the pipeline (hazard detection), and by forwarding. Explain when the �rst three methods can
be used and how they work.

The MIPS processor hardware and the simulator both use forwarding to solve problems
associated with data hazards. So far, you have used a version of the pipeline (S-script) which
does not have forwarding. Now we are going to utilize the pipeline in the Xl-script directory,
which takes advantage of forwarding. Single step through the program above using the new
pipeline and examine how forwarding works.

• How does the forwarding unit know that it should bypass a value to an earlier stage?

• Were are the origin and destination of the forwarded data in the example above?

1.6.4 Experiment 4

Switch back to the simple version of the pipeline without forwarding (S-script). Modify the
following code by assigning the same value to t0 and t1, and single step through the instructions.

1 #include <iregdef.h>

2

3 .set noreorder

4 .text

5 .globl start

6

7 .ent start

8 start:

9 nop

10 nop

11 beq t0, t1, start

12 addi t0, t0, 1

13 nop

14 nop

11

15 nop

16 .end start

• How many cycles does it take until the branch instruction is ready to jump? What has
happened to the following addi instruction while the branch is being calculated?

• What is the problem here? What is this kind of hazard called?

• What are the possible solutions to this problem?

• Switch to the forwarding-enabled pipeline (Xl-script) again. How does this version handle
beq?

1.6.5 Experiment 5

Run the following program on the pipeline simulator (simple version). Assign distinct values to
t0 and t1, and let t2 contain the address to a memory location where you know its contents.
Then single step through the instructions.

1 #include <iregdef.h>

2

3 .set noreorder

4 .text

5 .globl start

6

7 .ent start

8 start:

9 lw t0, 0(t2)

10 add t1, t1, t0

11 nop

12 nop

13 nop

14 .end start

• After how many clock cycles will the destination register of the load instruction, t0, receive
the correct result value?

• After how many clock cycles is the value of t0 needed in the add instruction?

• What is the problem here? What is this kind of hazard called? This kind of problem can
be solved with forwarding or hazard detection and stalling, just as other data hazards, but
most MIPS implementations do not have these for load.

• What are the alternative solutions that can be used?

• Does the forwarding version of the simulator (Xl-script) handle the problem with delayed
load?

12

1.7 Instruction Level Parallelism

Fire up your browser and go to http://dark.eit.lth.se/ and click on this link http://dark.

eit.lth.se/cgi-bin/ScoreBoard.pl - works best with Internet Explorer)
In this section we move from compiler-driven to hardware-driven optimizations. We will

look at the e�ect of using the Scoreboarding algorithm. This is done in order to replace the pre-
ordering we did so far with out-of-order execution. The instructions are tracked in the following
manner. First, one can see the status of the respective instructions while they �ow through the
pipeline. Secondly, the status of the functional units are shown in nine �elds:

• FU: Operation to perform in the unit (e.g. add or sub)

• Status busy: Indicates whether the unit is busy or not

• Fi: Destination register name

• Fj and Fk: Source register names

• Qj and Qk: Name of functional unit producing the data for the source registers

• Rj and Rk: Flags indicating whether the source registers have received their data

And �nally, the status of the registers can be observed. The history of the program execution
is also available.

For each instruction record the clock cycle in which it enters a particular pipe stage.

1.7.1 Experiment 1

Run the following program and answer the questions:

1 ld F6, 34(R2)

2 ld F2, 45(R3)

3 multd F0, F2, F4

4 subd F8, F6, F2

5 divd F10, F0, F6

6 addd F6, F8, F2

• After how many clock cycles can this program branch back to the beginning? (that is, the
�rst ld of the 2nd iteration can be issued)

• Does re-ordering in�uence the execution time of this program, and if yes how?

• Is there a Write-after-Read hazard present and how is it resolved?

1.7.2 Experiment 2

Now examine the following assembly sequence (use the �rst simulator at http://dark.eit.lth.
se/darklab/scoreboard/).

1 ld F0, 0(R1)

2 addd F4, F0, F2

3 sd F4, 0(R1)

4 ld F0, -8(R1)

5 addd F4, F0, F2

6 sd F4, -8(R1)

13

http://dark.eit.lth.se/
http://dark.eit.lth.se/cgi-bin/ScoreBoard.pl
http://dark.eit.lth.se/cgi-bin/ScoreBoard.pl
http://dark.eit.lth.se/darklab/scoreboard/
http://dark.eit.lth.se/darklab/scoreboard/

• After how many clock cycles can this program branch back to the beginning?

• Does re-ordering in�uence the execution time of this program and how?

• Is there a Write-after-Read hazard present and how is it resolved?

1.7.3 Experiment 3

The last program that we will look at is the sum-of-products that appears in the Fast Fourier
Transform.

1 ld F0, 0(R1)

2 ld F2, 4(R1)

3 multd F8, F0, F2

4 ld F4, 8(R1)

5 ld F6, 10(R1)

6 multd F10, F4, F6

7 addd F10, F8, F10

8 ld F8, 12(R1)

9 addd F10, F10, F8

• After how many clock cycles can this program branch back to the beginning?

• Does re-ordering in�uence the execution time of this program and how?

• Is there a Write-after-Read hazard present and how is it addressed?

1.7.4 Experiment 4 - for interested students

Interested students can do the same experiments using the Tomasulo algorithm. Do you notice
any di�erence?

1.8 Conclusions

Before you can get a pass on the laboratory exercise, think about the questions below and explain
to your TA:

• How can a pipelined processor be faster than one without pipelining?

• What are the special problems that appear in pipelining?

• How can these problems be overcome?

• Is there a di�erence in writing compilers for pipelined processors?

• Which is faster, straight code or code with many branches?

• What does RISC mean? What does CISC mean?

• Is the Pentium processor pipelined? How about these: AMD Phenom? Intel Core2? ARM
Cortex A?

14

2 Laboratory 2: Advanced pipelining

2.1 Goals

After this laboratory exercise, you should understand how program behavior (instruction class
pro�les) relates to branch prediction e�ciency, as well as trade-o�s related to their implemen-
tation. You should also have an understanding for the relative importance of various advanced
pipeline techniques like branch prediction, variable pipeline width and out-of-order execution.

2.2 Literature

Hennessy and Patterson: Appendix A, Chapter 2-3
Section 5.3 of this lab-manual

2.3 Preparations

Read section 5.3 on simulation and the SimpleScalar tool-set thoroughly. You should be able
to answer the home assignment questions. Read through this laboratory assignment and make
sure that you have su�ciently familiarized yourselves with the required concepts in pipelining
and branch prediction.

Note: In the course of these labs you will run a large number of simulations, and it may be
di�cult to keep track of your results unless you maintain a lab book (hard copy or on-line). This
book should contain the description of all the simulation runs you performed, your simulation
plans, comparison of results, graphs if any etc. In addition as you will start using more detailed
simulators, the simulation time will increase. A lab book which documents all the simulation
runs you performed already will help you avoid repeat runs, and will save you considerable time.
The system allows you to attach an arbitrary ID to each run, as well as it saves all results within
a session (typically one lab). Use this intelligently in order to keep better track of what you have
done.

2.3.1 Home Assignment 1

Answer the following questions:

• What is the role of simulators in processor design?

• Why is it advantageous to have several di�erent simulators?

• For the four branch prediction schemes 'taken|perfect|bimod|comb', describe the predic-
tor. Your description should include:

� What information the predictor stores (if any)?

� How the prediction is made?

• What is out-of-order execution?

• What is the di�erence between scoreboarding and Tomasulo?

15

2.4 Program behavior (instruction pro�ling)

Start aWeb-browser (works best with Internet Explorer) and go to the initial lab-page (http://dark.eit.lth.se/
) and login with your EFD-id. After the lab is �nished and you have recorded all your measure-
ments you should logout of the system.

When you have logged out all your results are unavailable so be sure to record them �rst!

Choose three of the available benchmarks from the 'Program to run' menu (they are brie�y
described in section 5.3.3), and run the pro�ling simulator for each of them, to �nd out the
distribution of instruction classes.

Fill table 1 with all available benchmark programs versus instruction class pro�les. (Get
values from other groups for those you didn't run yourself!)

benchmark load store uncond cond integer fp
branch branch computation computation

anagram

go

compress

applu

mgrid

swim

perl

gcc

Table 1: Benchmark programs versus instruction class pro�les in %

Choose one of the benchmarks for your further assignments based on the following consid-
erations:

• Is your benchmark memory intensive or computation intensive?

• Is your benchmark mainly using integer or �oating point?

• What percentage of the instructions executed are conditional branches? Given this per-
centage, how many instructions on average does the processor execute between each pair
of conditional branch instructions (do not include the conditional branch instructions).

• Using your textbook, class notes, other references, and your own opinion, list and explain
several reasons why the performance of a processor like the one simulated by sim-outorder
(e.g., out-of-order-issue superscalar) will su�er because of conditional branches. For each
reason also explain how, if at all, a branch predictor could help the situation.

2.5 Branch Predictors

2.5.1 Experiment 1

We will now use the branch prediction simulator (sim-bpred) to investigate the e�ects of branch
predictors on the execution of your benchmark. This simulator allows you to simulate 5 di�er-
ent types of branch predictors. You can see the list of them by looking at the menu 'branch
predictor type' for the branch prediction simulator sim-bpred. (bimod is the 2-bit prediction
scheme, �gure 2.4, in the course-book. '2lev' is a two level adaptive branch predictor. `comb'

16

http://dark.eit.lth.se/

combines a bimod and a 2-level predictor. The detailed simulator (sim-outorder) also implements
the 'perfect' predictor which always make a correct prediction.)

For three of the possible branch prediction schemes, 'nottaken|taken|bimod', run the sim-
ulation for your benchmark as you did above and note the branch prediction statistics for each
in table 2.

benchmark nottaken taken bimod

anagram

go

compress

applu

mgrid

swim

perl

gcc

Table 2: Branch prediction statistics

Note: the simulator statistics are for all branches - both conditional and unconditional
(which are regarded as predicted correctly). For this reason the reported prediction rates for
taken and nottaken do not add to 1. Use the branch-direction measurements and number of
updates, both corrected for unconditional branches to calculate accuracy (hit rate for conditional
branches).

2.5.2 Experiment 2

Use the detailed simulator (sim-outorder) to measure and describe how the prediction rate
(bpred_dir_rate) e�ects the processor CPI (sim_CPI) for your benchmark. Also use this sim-
ulator to measure CPI when using the perfect branch predictor type. This simulator produces
a lot of text (Simulation Statistics) as the result of a simulation, but you can use the browser
search function on the result-page in order to �nd the desired result.

taken bimod comb perfect

Branch CPI Branch CPI Branch CPI Branch CPI
Benchmark pred. pred. pred. pred.

rate rate rate rate

Table 3: Branch prediction rate versus CPI

There is a bug in the simulator, such that branch prediction rates for taken/nottaken
are wrong. For the taken column only use the CPI from the simulation and use the
rates from table 2!

(Again �ll in values in table 3 for other benchmarks with the help of other groups.)
For the four branch prediction schemes 'taken|perfect|bimod|comb', describe the predic-

tor. Your description should include:

17

• What information the predictor stores (if any)?

• How the prediction is made?

• What the relative accuracy of the predictor is compared to the others.

2.6 Choosing a new branch strategy

Suppose you are choosing a new branch strategy for a processor. Your design choices are:

1. predict branches taken with a branch penalty of 2 cycles and a 1200 MHz clock-rate

2. predict branches taken with a branch penalty of 3 cycles and a 1300 MHz clock-rate

3. predict branches using bimod with a branch penalty of 4 cycles and a 900 MHz clock-rate

4. predict branches using bimod with a branch penalty of 4 cycles and a 1000 MHz clock-rate
and half the L1 cache size

Hint - �ll in table 4 for your chosen benchmark, with cycle count (sim_cycle) and CPI from
detailed simulations. Calculate the execution time using the given clock-rate.

Benchmark Alternative 1 Alternative 2 Alternative 3 Alternative 4

Sim_cycle
CPI
Exe time

Sim_cycle
CPI
Exe time

Sim_cycle
CPI
Exe time

Table 4: Impact of di�erent branch strategies

Questions:

• What would be your choice for your benchmark? Why?

• How much do you have to be able to increase the clock frequency in order to gain perfor-
mance when allowing a branch miss-prediction latency of 3 cycles instead of 2 when using
the taken predictor?

• Compare your results with other groups using other benchmark programs and discuss your
observations.

2.7 In-order vs out-of-order issue

Now you will conduct experiments to �nd out how the increase in the parallelism in processing
instructions a�ects the CPI of your processor, and how you can improve the performance of
memory reference instructions.

In all experiments you will use the default cache and branch predictor con�gurations.

18

2.7.1 Experiment 1

Experiment with in-order and out-of-order issue, and the width of the pipeline, by running the
simulation with the following combinations of parameters. Measure CPI and total no of cycles.
(Note: out-of order issue and execution is default. in-order issue is selected with the check-box
labeled 'run pipeline with in-order issue').

• Pipeline width 1, in-order and out-of-order issue

• Pipeline width 4, in-order and out-of-order issue

• Pipeline width 8, in order and out of order issue

Benchmark Pipeline width=1 Pipeline width=4 Pipeline width=8
Sim_cycle CPI Sim_cycle CPI Sim_cycle CPI

Out-of-order

In-order

Out-of-order

In-order

Table 5: In-order and out-of-order issue versus pipeline width

Questions:

• What is the impact on CPI of the increased pipeline width?

• Explain the impact and their di�erence for both in-order and out-of-order issue.

2.7.2 Experiment 2

Run the sim-outorder simulator varying the number of memory ports available: 1,2 and 4. Use
a pipeline width of 4.

Benchmark Memory port=1 Memory port=2 Memory port=4
Sim_cycle CPI Sim_cycle CPI Sim_cycle CPI

anagram Out-of-order

anagram In-order

compress Out-of-order

compress In-order

Table 6: In-order and out-of-order issue versus memory ports

Questions

• What is the impact on CPI of the increase in available memory ports?

2.8 Conclusion

Before you pass the laboratory exercise, think about the questions below and explain to your
supervisor:

• Why is bimodal branch prediction more expensive to implement than predict nottaken?

19

• Why is bimodal better than nottaken?

• What, if any, is the impact on CPI by allowing out-of-order issue?

• What, if any, is the impact on CPI by allowing more instructions to be processed in one
cycle?

• Is the wider pipeline more e�ective with in-order or out-of-order issue, and if so - why?

20

3 Laboratory 3: Cache memory

3.1 Goals

A cache memory is a memory that is smaller but faster than the main memory. Due to the
locality of memory references, the use of a cache memory can give the e�ect on the computer
system that the apparent speed of the memory is that of the cache memory, while the size is that
of the main memory. The actual e�ciency gained by using a cache memory varies depending on
cache size, block size, and other cache parameters, but it also depends on the program and data.
In short, everything depends on a proper parametrization.

After this laboratory exercise, you should understand the basic principles of cache memories,
and how di�erent parameters of a cache memory a�ects the e�ciency of a computer system.

3.2 Literature

Hennessy and Patterson: Appendix C, Chapter 5
MIPS Lab Environment Reference Manual (section A.2 in this lab-manual)
Cache tutorial at http://www.ecs.umass.edu/ece/koren/architecture/Cache/tutorial.html

3.3 Preparations

Use the cache tutorial to familiarize yourself with cache concepts and terminology.

Figure 5: Data cache organization (see also HP �g C.5). (Note there is a bug in the cache simulator

that makes the cache statistics counters wrap around at 100 000.)

Read the literature and this laboratory exercise in detail, and solve the home assignments.
Note that you must solve the home assignments, or you will not be allowed to start the laboratory

21

exercise.

It is mandatory to be familiarized with cache concepts and terminology. As a �rst indication
of being initiated on the subject, you should be able to solve conceptual issues like:

3.3.1 Home Assignment 1

Show the address bit partitioning for a memory system with
Memory size = 32MB
Cache size = 64 KB Block size = 16 Bytes
Set associative with 8 blocks per set. (What is a block?)

3.3.2 Home Assignment 2

In which order is the micro-operations done during a successful cache access (cf HP �gure C.5).

• choose cache block

• valid address and divide into �elds

• data sent to CPU

• compare tag with address �eld

• choose word within cache block

3.3.3 Home Assignment 3

Explain the following: cache size, block size, number of sets, write policy, and replacement policy.

3.3.4 Home Assignment 4

The following C program contains two subroutines which returns the sum of all the matrix
cells. The only di�erence between the two subroutines is that they visit the matrix elements in
a di�erent order. This may seem unimportant, but with a cache memory, it may make a big
di�erence.

Study the C-program carefully so that you understand in which order the matrix elements
are used. The C-programs used here are available for downloading from the 'Software tools for
Computer Architecture' page at http://dark.eit.lth.se/.

#include <stdio.h>

#include <idt_entrypt.h>

#define N 10

int A[N][N];

int SumByColRow (int Matrix[N][N])

{

int i, j, Sum = 0, Time;

flush_cache();

22

timer_start();

for (j = 0; j < N; j ++) {

for (i = 0; i < N; i ++) {

Sum += Matrix[i][j];

}

}

Time = timer_stop();

printf("SumByColRow time: %d\n", Time);

return Sum;

}

int SumByRowCol (int Matrix[N][N])

{

int i, j, Sum = 0, Time;

flush_cache();

timer_start();

for (i = 0; i < N; i ++) {

for (j = 0; j < N; j ++) {

Sum += Matrix[i][j];

}

}

Time = timer_stop();

printf("SumByRowCol time: %d\n", Time);

return Sum;

}

main ()

{

int a, b;

printf ("Laboratory Exercise, Home Assignment\n");

// Run one of the cases below; comment out the other

// Case 1

a = SumByColRow (A);

printf ("The sum is %d\n", a);

// Case 2

b = SumByRowCol (A);

printf ("The sum is %d\n", b);

}

3.4 Missing and hitting in a cache

Create your project in the MIPS IDE, type in the above C program, build and upload it to
the cache simulator (program Mips in the mips catalogue (S:)). Run the program in the cache
simulator with the default settings and study how the instruction cache works. Fill in the
�rst line of table 8.

23

I-cache D-cache Memory

read cycles = 50, write cycles = 50
Default cache size = 16 cache size = 16 writepolicy=WriteThrough
setting block size = 2 block size = 2 write bu�ersize = 0

blocks in sets = 1 blocks in sets = 1 replacementpolicy=Random

Table 7: Default settings of the simulator (All penalty enabled).

Hint: Wall-clock time is smaller if I-cache and D-cache windows are closed.

Questions:
Give full answers!

• How is the full 32 bit address used in the cache memory?

• What happens when there is a cache miss?

• What happens when there is a cache hit?

• How large is the block size?

• What is the function of the tag?

3.5 Parametrization

The parameters of the cache memory can be changed to test the e�ects of di�erent cases.

Run the program in the cache simulator with the settings in Table 8, and study how the
instruction cache works. Record the cycles of cache miss/hit, and total cycles according to the
table.

Questions:

• Investigate the e�ects of di�erent parameter settings. Explain the following: cache size,
block size, number of blocks in sets, write policy, and replacement policy.

• If a cache is large enough that all the code within a loop �ts in the cache, how many cache
misses will there be during the execution of the loop? Is this good or bad? How should
the code look like that would bene�t the most from a large block size?

Hint: If you don't see any clear di�erence - change the code to increase the measured
di�erence.

24

Settings I-cache D-cache Simulation
Hit rate Hit rate time

All SumByColRow

default SumByRowCol

I-cache and D-cache SumByColRow
cache size =32
Others: default SumByRowCol

I-cache and D-cache SumByColRow
blockSize =8
Others: default SumByRowCol

I-cache and D-cache SumByColRow
Number of blocks in sets =2
Others: default SumByRowCol

D-cache SumByColRow
writepolicy=WriteBack
Others: default SumByRowCol

D-cache SumByColRow
replacementpolicy=FIFO
Others: default SumByRowCol

Table 8: Settings for parameter experimentation.

3.6 Optimized parametrization

Compile the C-program with the compiler option 'Optimization high'. Run the program in the
in the cache simulator with the settings in Table 9, and study how the data cache works.

Questions:

• Study the subroutines SumByColRow and SumByRowCol . Explain carefully in what or-
der the memory addresses are visited by the two subroutines.

• Execute the program and study how many cache hits the two subroutines have. Is there a
di�erence? Why?

Settings I-cache D-cache Simulation
Hit rate Hit rate time

I-cache:
Disable Penalty(*) SumByColRow

D-cache:
cache size=64
block size= 16 SumByRowCol

Others: Default

Table 9: Settings for optimization.

25

• Also speculate if you can detect in which order the matrix elements are located in physical
memory.

3.7 Matrix multiplication

Create a new project with the following C program. Compile your code with the compiler option
Optimization high.

#include <stdio.h>

#include <idt_entrypt.h>

#define N 10

int A[N][N];

int initMatrix (int Matrix[N][N])

{

int i, j;

for (i = 0; i < N; i ++) {

for (j = 0; j < N; j ++) {

Matrix[i][j] = i*N+j;

}

}

return 0;

}

int SumOfProdByRowCol (int Matrix[N][N])

{

int i, j, k, r, Sum = 0, Time;

flush_cache();

timer_start();

for (i = 0; i < N; i ++) {

for (j = 0; j < N; j ++) {

r = 0;

for (k = 0; k < N; k = k + 1)

r = r + Matrix[i][k]*Matrix[k][j];

Sum += r;

}

}

Time = timer_stop();

printf("SumOfProd time: %d\n", Time);

return Sum;

}

int main ()

{

26

int a;

initMatrix(A);

printf ("Laboratory Assignment Matrix multiplication\n");

a = SumOfProdByRowCol(A);

printf ("The sum of products is %d\n", a);

}

Introduce a blocking factor and change the program accordingly to localize the operations.
Run the new version and explain the di�erences in performance. One of the sample codes like
this:

#define B 4

#define min(X,Y) (X>Y?Y:X)

int SumOfProdByRowCol_Blockfactor (int Matrix[N][N])

{

int i, j, k, r, Sum = 0, Time;

int jj, kk;

flush_cache();

timer_start();

for (jj = 0; jj < N; jj = jj + B)

for (kk = 0; kk < N; kk = kk + B)

for (i = 0; i < N; i ++) {

for (j = jj; j < min(jj+B, N); j ++) {

r = 0;

for (k = kk; k < min(kk+B, N); k = k + 1)

r = r + Matrix[i][k]*Matrix[k][j];

Sum += r;

}

}

Time = timer_stop();

printf("SumOfProd time: %d\n", Time);

return Sum;

}

Simulate both of the programs with the settings shown in table 10.

Settings D-cache Simulation
Hit rate time

I-cache: Without
Disable Blocking factor
Penalty(*)
D-cache:
block size= 4 With
Others: Default Blocking factor

Table 10: Settings for matrix multiplication program.

Questions:

27

• What is the blocking factor and how does it work? Draw diagrams to illustrate how the
two programs work!

• How many methods do you know to reduce the cache miss rate?

3.8 Re�ections/Conclusion

You should now be able to converse on typical cache dimensioning problems, like:

• What is the general idea with cache memory?

• How does block size a�ect the e�ciency of a cache?

• How fast is a cache memory and a DRAM memory in relation to each other?

• Does the optimal cache parameters depend on the program code?

• How can one select good cache parameters?

28

4 Laboratory 4: Advanced cache; Cache coherency

4.1 Goals

After this laboratory exercise, you should have deeper understanding of how various cache pa-
rameters a�ects performance. Finally, you should get an insight into the cache inconsistency
problem in a multiprocessor system.

4.2 Literature

Hennessy and Patterson: Chapter 2, 5; Appendix A, C
Section 5.3 of this manual

4.3 Preparations

Read section 5.3 on simulation and the SimpleScalar tool-set thoroughly.
Make sure that you have su�ciently mastered the concepts in chapters 2, 5 and appendixes

A, C of Hennessy and Patterson. You can test some of this by answering the following home
assignments.

Note: In the course of these lab you will run a large number of simulations, and it may be
di�cult to keep track of your results unless you maintain a lab book (hard copy or on-line). This
book should contain the description of all the simulation runs you performed, your simulation
plans, comparison of results, graphs if any etc. In addition as you will start using more detailed
simulators, the simulation time will increase. A lab book which documents all the simulation runs
you performed already will help you avoid repeat runs, and will save you considerable time. The
system allows you to attach an arbitrary ID to each run, as well as it saves all results within a ses-
sion (typically one lab). Use this intelligently in order to keep better track of what you have done.

4.3.1 Home Assignment 1

• What are the four main categories of cache performance optimizations? Relate these to
the formula for average memory access time.

• Which of these categories does associativity a�ect?

• Which of these categories does block size a�ect?

4.3.2 Home Assignment 2

• How is associativity, number of blocks, number of sets and cache size related?

29

• How does these a�ect the average access time for L1- and l2-caches?

4.3.3 Home Assignment 3

• Describe the cache inconsistency problem and also some of the sources for this issue.

4.3.4 Home Assignment 4

• How does the MESI protocol work? Describe the corresponding state diagram in detail.

4.3.5 Home Assignment 5

• Can we solve the cache inconsistency problem by considering "write through" policy for
all caches in the system?

4.4 Cache performance

Start a Web-browser and go to the initial lab-page (http://dark.eit.lth.se/) and login with your
EFD-id. After the lab is �nished and you have recorded all your measurements you should logout
of the system.

When you have logged out all your results are unavailable so be sure to record them �rst!
Use a single run of sim-cheetah to simulate the performance of the following cache con�gu-

rations for two di�erent benchmarks.

• Uni�ed cache (Reference stream to analyze)

• least-recently-used (LRU) replacement policy

• 16 to 1024 sets

• 1-way to 8-way associativity

• 32-byte cache blocks

Note: sim-cheetah provides results for a continuous range of associativity, in this case 1, 2,
3, 4, 5, 6, 7 and 8. In your analysis of cache behavior ignore the measurements for associativity
which is not a power of two, ie. consider only associativity of 1, 2, 4 and 8.

• Using the output from sim-cheetah, for caches of equivalent size, verify if increasing as-
sociativity or the number of sets in the cache gives the most bene�t. To do so produce
graphs showing changes in miss rate as associativity/no of sets changes. Matlab routines
for producing graphs (see section 5.4) can be downloaded from the 'Software tools for
Computer Architecture' page at http://dark.eit.lth.se/.

• Repeat this for data only cache, and for instructions only cache ('Reference stream to

analyze').

30

http://dark.eit.lth.se/

4.4.1 Relation block size, miss ratio, and mean access time

Run simulations <sim-outorder> for two di�erent benchmarks with the following con�gurations:

• uni�ed L1 cache with a size of 32 KB, associativity 2 and block sizes 16, 32, 64, 128, 256
bytes.

• The L2 data cache should be a �xed con�guration with a total size of 512 KB and a
block-size of at least 256 (choose reasonable parameters).

• Keep other parameters as default.

Note: Remember to set all the cache parameters (program, L2 data cache, uni�ed L1
and L2 caches) for each simulation. Record data in table 11 (Hint - hit times for L1 and L2
(cache:dl1lat, cache:dl2lat) are given in the simulation statistics. Since L2 con�guration is not
changed during your experiment you can estimate a �xed number for L2 miss penalty using L2
block-size, memory latency and memory access bus width.)

L2 data cache

�xed total size No of sets block size (≥ 256) associativity

512 KB

L1 data cache Miss Rates

L1 size L1 assoc No of sets block size CPI av. mem. access time MR-L1 MR-L2

32 KB 2 16

32 KB 2 32

32 KB 2 64

32 KB 2 128

32 KB 2 256

Table 11: L1 and L2 data cache

• Make plots that show block size vs CPI, and average memory access time vs block size.
Matlab routines for producing plots (see section 5.4) can be downloaded from the 'Software
tools for Computer Architecture' page at http://dark.eit.lth.se/.

• How does average access time vary with block size?

4.5 Cache Inconsistency

Modern computers are designed based on multi processors with a shared memory. In such com-
puter architectures, each processor has its own separate cache, which is called local cache, as
shown in Fig. 6. During the system operation, some of these processors request a particular
memory block and perform some processing on the cached block. Then, the modi�ed cached

31

Main
Memory

Shared Bus

Cache 2

CPU 2

Cache 3

CPU 3

Cache 1

CPU 1

0X00110X35

Figure 6: An example of multi processor architecture.

data will be saved in the corresponding local caches. So, in this case it is possible to have many
di�erent copies of that memory block: one copy in the main memory and one copy with di�erent
value in the local cache of the processor that requested it. So, these local modi�cations results
in an inconsistent view of the main memory. Because, the change in one of these copies of data
is not re�ected by the other copies.
The main sources of inconsistency are:

1) Shared data:
Consider that the value of A=0X35 is stored in address 0X0011 of the main memory in Fig. 6.
CPU1 and CPU2 read the value of A=0X35. After some processing, CPU2 writes the value of
0X62 to A in its local cache. But, CPU1 will be left with an invalid cache of memory without
any noti�cation of that change. After that, CPU3 wants to read the content of address 0X0011
of the main memory. Depending on the write policy, the value of A in the main memory can be
A=0X35 or A=0X62. Cache coherence will manage such con�icts by maintaining a coherent
view of the data values in multiple caches.

2) Process migration
In multiprocessor systems, usually the heavy tasks are distributed between multiple CPUs, de-
pending on their current processing load. Consider that a certain task is running on CPU1 and
system decides to move a part of this processing to another CPU, which has less load. In such
case, the local caches of these two CPUs are not consistent (regardless of updating the content
of the main memory).

3) I/O activity
When new data enters to the shared main memory, there is a potential of inconsistency between
local caches and the main memory. Because, the input operations write something into the
memory, while the content of local caches are not updated. Also, there is similar problem in
writing data to an I/O while the sources of that data are not consistent.

4.6 Cache Coherency

There are many protocols to prevent from above cache inconsistency problems, which are called
Cache Coherence protocols. Cache coherence is a mechanism that provides a uniform state for
each cached block of data and it ensures that all the changes in the content of a shared data are

32

propagated throughout the whole system in the proper time.

4.6.1 MESI Protocol

MESI is one of the most common cache coherence protocols, which supports write-back caches.
In this part of the lab, you will work with the VivioJS animation to understand the MESI cache
coherency protocol.
Click here to open a web-browser and access to the VivioJS animation. Also, you can read more
about the MESI protocol in the same page (https://www.scss.tcd.ie/ Jeremy.Jones/vivio/caches/
MESIHelp.htm). This animation implements three di�erent scenarios. You should be able to
perform the following tasks with VivioJS in this lab:

4.6.2 Scenario 1 � Bug Free

• Set the animation mode to "bug free!". Run the instructions in Table 12 by pressing the
proper buttons of CPUs.

• Look at the direction of the tra�c on the address and data busses after running each
instruction. Then, write the important actions that you observed in the caches and memory,
in the third column of Table 12. You should specify the type of operation (BR, BW, PR,
PW), if caches or main memory are updated, and if that operation is done in the shared
or non-shared mode.

• After running each instruction, �ll in the corresponding cells in the last three columns of
Table 12 (i.e. 6 cells are related to all 6 cache lines). In each cell, write a phrase in the
format of "X-Y-Z", where "X" is the state of that cache line in the MESI FSM, "Y" is the
address, and "Z" is the corresponding data. Results of the �rst instruction are written in
Table 12 as an example. Write "U" if the content of that cache line is unknown.

4.6.3 Scenario 2 � Bug 0

It is possible to introduce bugs into the VivioJS animation by pressing the "bug free" button.

• Set the animation mode to "bug 0". Run the instructions in Table 13 by pressing the
proper buttons of CPUs.

• Fill in Table 13 as described above.

• Indicate that what the bugs are in this experiment. You should be able to explain all the
transitions in both scenarios and relate them to the MESI FSM.

Conclusions

Before you pass the laboratory exercise, think about the questions below and explain to your
supervisor:

• What is the relative gain for the various performance enhancements techniques used in this
lab?

33

https://www.scss.tcd.ie/Jeremy.Jones/vivio/caches/MESIHelp.htm

Operation Results of the Operation
Cache Status

Cache 0 Cache 1 Cache 2

1 CPU0: read a1
CPU0 reads a1 from the memory (not shared) I-U-U I-U-U I-U-U

E-a1-0 I-U-U I-U-U

2 CPU1: write a1

3 CPU2: write a1

4 CPU0: read a1

5 CPU1: read a0

6 CPU0: write a0

7 CPU1: write a2

8 CPU2: read a0

9 CPU0: write a2

10 CPU2: read a2

11 CPU1: write a1

12 CPU1: read a3

13 CPU2: read a1

Table 12: The result of running a program in VivioJS animation -"bug free!" mode.

• Are the techniques investigated in this laboratory (cache organization, pipeline modi�ca-
tions) independent?

• How does MESI protocol help to solve the cache inconsistency problem?

References

[1] Europractice, UMC standard,
http://www.europractice-ic.com/general_prices.php, 2011.

34

Operation Results of the Operation
Cache Status

Cache 0 Cache 1 Cache 2

1 CPU0: read a1
CPU0 reads a1 from the memory (not shared) I-U-U I-U-U I-U-U

E-a1-0 I-U-U I-U-U

2 CPU1: write a1

3 CPU2: write a1

4 CPU0: read a1

5 CPU1: read a0

6 CPU0: write a0

7 CPU1: write a2

8 CPU2: read a0

9 CPU0: write a2

10 CPU2: read a2

11 CPU1: write a1

12 CPU1: read a3

13 CPU2: read a1

Table 13: The result of running a program in VivioJS animation -"Bug 0" mode.

[2] ITRS, http://www.itrs.net/Links/2001ITRS/PIDS.pdf, 2001.

[3] ITRS, http://www.itrs.net/Links/2003ITRS/PIDS2003.pdf, 2003.

35

36

5 Appendix: Software

5.1 Pipeline simulator mipspipe2000.exe

See �Mips Lab Environment Reference Manual� section �Pipeline� available from 'Course Mate-
rial' on the course Web-pages.

5.2 Cache simulator (mips.exe)

See �Mips Lab Environment Reference Manual� available available from 'Course Material' on the
course Web-pages.

5.3 SimpleScalar simulator tool set

5.3.1 Getting Started with the SimpleScalar Tool Set

Based on the manual by Ewa Z. Bem, School of Computing and Information Technology, Univer-
sity of Western Sydney Nepean, which was based on the manual by Todd M. Bezenek, University
of Wisconsin

Introduction

This document contains background material about the SimpleScalar toolset of simulators used
in the Computer Architecture lab. SimpleScalar itself is available for download together with
various tools and utilities including detailed documentation from http://www.simplescalar.com/

SimpleScalar and Simulation in Computer Architecture

When computer architecture researchers work to improve the performance of a computer sys-
tem, they often use an existing system to simulate a proposed system. Although the intent is not
always to measure raw performance (estimating power consumption is one alternative), perfor-
mance estimation is one of the most important results obtained by simulation. The SimpleScalar
tool set is designed to measure the performance of several parts of a superscalar processor and
its memory hierarchy. This document describes the SimpleScalar simulators. Other simulation
systems may be similar or very di�erent.

Overview of SimpleScalar Simulation

The SimpleScalar tool set includes a compiler that creates binaries for a non-existent processor.
The binaries can be executed on one of several simulators that are included in the tool set. This
section describes the goals of processor simulation.

The execution of a processor can be modelled as a series of known states and the time (or
other costs, ie., power) required to make the transition between each pair of states. The state
information may include all or a subset of:

• The values stored in all memory locations.

• The values stored in and the status of all cache memories.

• The values stored in and the status of the translation-lookaside bu�er (TLB).

• The values stored in and the status of the branch prediction table(s) or branch target bu�er
(BTB).

37

http://www.simplescalar.com/

• All processor state (ie. the pipeline, execution units (integer ALU, load/store unit, etc.),
register �le, register update unit (RUU), etc.)

A good way to evaluate the performance of a program on a proposed processor architecture is
to simulate the state of the architecture during the execution of the program. By simulating the
states through which the processor will pass during the execution of a program and estimating
the time (or other measurement) necessary for each state transition, the amount of time that
the simulated processor will need to execute the program can be estimated.

The more state that is simulated, the longer a simulation will take. Complex simulations
can execute 100s of times slower than a real processor. Therefore, simulating the execution of a
program that would take an hour of CPU time on an existing processor can take a week on a
complex simulator. For this reason, it is important to evaluate what measurements are desired
and limit the simulation to only the state that is necessary to properly estimate those measure-
ments. This is the reason for the inclusion of several di�erent simulators in the SimpleScalar
tool set.

Pro�ling

In addition to estimating the execution time of a program on the simulated processor, pro�le
information may be of use to computer architects. Pro�le information is a count of the number
or frequency of events that occur during the execution of a program. One common example
of pro�le data is a count of how often each type of instruction (ie., branch, load, store, ALU
operation, etc.) is executed during the running of a program.

Pro�le information can be used to gauge the relative importance of each part of a processor's
implementation in determining its performance when executing the pro�led program.

The SimpleScalar Base Processor

The SimpleScalar tool set is based on the MIPS R2000 processor's instruction set architecture
(ISA). The processor is described in MIPS RISC Architecture by Gerry Kane, published by
Prentice Hall, 1988. The ISA describes the instructions that the processor is capable of executing
- and therefore the instructions that a compiler can generate - but it does not describe how the
instructions are implemented. The implementation is what computer architects change in order
to improve the performance of a processor.

An existing processor can be chosen as a base processor for several reasons. These may
include:

• The architecture of the processor is well known and documented.

• The architecture of the processor is state-of-the-art and therefore it is likely to be useful
as a base for the study of future processors.

• The architecture of the processor has been implemented as a real processor, allowing sim-
ulations to be compared to executions on a real, physical processor.

An important consideration in the choice of the MIPS architecture for the SimpleScalar
tool set was the fact that the GNU GCC compiler was available in source-code form, and could
compile to the MIPS architecture. This allowed the use of this public-domain software as part
of the SimpleScalar tool set.

38

Description of the Simulators

The SimpleScalar tool set includes a number of simulators designed for various purposes. They
are described below. For those simulators we are using there are also a description of the
important pro�ling options available.

sim-bpred This simulator implements a branch predictor analyser.

sim-cache This simulator implements a functional cache simulator. Cache statistics are gener-
ated for a user-selected cache and TLB con�guration, which may include up to two levels
of instruction and data cache (with any levels uni�ed), and one level of instruction and
data TLBs. No timing information is generated.

sim-cheetah This program implements a functional simulator driver for Cheetah. Cheetah is
a cache simulation package written by Rabin Sugumar and Santosh Abraham which can
e�ciently simulate multiple cache con�gurations in a single run of a program. Speci�cally,
Cheetah can simulate ranges of single level set-associative and fully-associative caches.

#-option <args> # <default> # description

-refs <string> # data # reference stream to analyze, {none|inst|data|unified}

-R <string> # lru # replacement policy, i.e., lru or opt

-C <string> # sa # cache configuration, i.e., fa, sa, or dm

-a <int> # 7 # min number of sets (log base 2, line size for DM)

-b <int> # 14 # max number of sets (log base 2, line size for DM)

-l <int> # 4 # line size of the caches (log base 2)

-n <int> # 1 # max degree of associativity to analyze (log base 2)

-in <int> # 512 # cache size intervals at which miss ratio is shown

-M <int> # 524288 # maximum cache size of interest

-c <int> # 16 # size of cache (log base 2) for DM analysis

Note that 'line size' above is the same as block size. Most of the parameters above are give
as log base 2 of the number, ie a line size of 16 bytes is given as '-l 4.

sim-fast This simulator implements a very fast functional simulator. This functional simulator
implementation is much more di�cult to digest than the simpler, cleaner sim-safe functional
simulator. By default, this simulator performs no instruction error checking, as a result,
any instruction errors will manifest as simulator execution errors, possibly causing sim-fast
to execute incorrectly or dump core. Such is the price we pay for speed!!!!

sim-outorder This simulator implements a very detailed out-of-order issue superscalar proces-
sor with a two-level memory system and speculative execution support. This simulator is
a performance simulator, tracking the latency of all pipeline operations.

-option <args> # <default> # description

-fetch:ifqsize <int> # 4 # instruction fetch queue size (in insts)

-fetch:mplat <int> # 3 # extra branch mis-prediction latency

-bpred <string> # bimod # branch predictor type

{nottaken|taken|perfect|bimod|2lev|comb}

-bpred:bimod <int> # 2048 # bimodal predictor config (<table size>)

-decode:width <int> # 4 # instruction decode B/W (insts/cycle)

39

-issue:width <int> # 4 # instruction issue B/W (insts/cycle)

-issue:inorder <true|false> # false # run pipeline with in-order issue

-issue:wrongpath <true|false> # true # issue instructions down wrong execution paths

-commit:width <int> # 4 # instruction commit B/W (insts/cycle)

-cache:dl1 <string> # dl1:128:32:4:l # l1 data cache config

-cache:dl1lat <int> # 1 # l1 data cache hit latency (in cycles)

-cache:dl2 <string> # ul2:1024:64:4:l # l2 data cache config

-cache:dl2lat <int> # 6 # l2 data cache hit latency (in cycles)

-cache:il1 <string> # il1:512:32:1:l # l1 inst cache config

-cache:il1lat <int> # 1 # l1 instruction cache hit latency (in cycles)

-cache:il2 <string> # dl2 # l2 instruction cache config

-cache:il2lat <int> # 6 # l2 instruction cache hit latency (in cycles)

-mem:lat <int list...># 18 2 # memory access latency (<first_chunk> <inter_chunk>)

-mem:width <int> # 8 # memory access bus width (in bytes)

-tlb:itlb <string> # itlb:16:4096:4:l # instruction TLB config

-tlb:dtlb <string> # dtlb:32:4096:4:l # data TLB config

-tlb:lat <int> # 30 # inst/data TLB miss latency (in cycles)

-res:ialu <int> # 4 # total number of integer ALU's available

-res:imult <int> # 1 # total number of integer multiplier/dividers available

-res:memport <int> # 2 # total number of memory system ports available (to CPU)

-res:fpalu <int> # 4 # total number of floating point ALU's available

-res:fpmult <int> # 1 # total number of floating point multiplier/dividers available

The cache config parameter <config> has the following format:

<name>:<nsets>:<bsize>:<assoc>:<repl>

<name> - name of the cache being defined

<nsets> - number of sets in the cache

<bsize> - block size of the cache

<assoc> - associativity of the cache

<repl> - block replacement strategy, 'l'-LRU, 'f'-FIFO, 'r'-random

Examples: -cache:dl1 dl1:4096:32:1:l

-dtlb dtlb:128:4096:32:r

Cache levels can be unified by pointing a level of the instruction cache

hierarchy at the data cache hiearchy using the "dl1" and "dl2" cache

configuration arguments. Most sensible combinations are supported, e.g.,

A unified l2 cache (il2 is pointed at dl2):

-cache:il1 il1:128:64:1:l -cache:il2 dl2

-cache:dl1 dl1:256:32:1:l -cache:dl2 ul2:1024:64:2:l

Or, a fully unified cache hierarchy (il1 pointed at dl1):

-cache:il1 dl1

-cache:dl1 ul1:256:32:1:l -cache:dl2 ul2:1024:64:2:l

40

sim-pro�le This simulator implements a functional simulator with pro�ling support.

-option <args> # <default> # description

-nice <int> # 0 # simulator scheduling priority

-max:inst <uint> # 0 # maximum number of inst's to execute

-all <true|false> # false # enable all profile options

-iclass <true|false> # false # enable instruction class profiling

-iprof <true|false> # false # enable instruction profiling

-brprof <true|false> # false # enable branch instruction profiling

-amprof <true|false> # false # enable address mode profiling

-segprof <true|false> # false # enable load/store address segment profiling

-tsymprof <true|false> # false # enable text symbol profiling

-taddrprof <true|false> # false # enable text address profiling

-dsymprof <true|false> # false # enable data symbol profiling

-internal <true|false> # false # include compiler-internal symbols during symbol profiling

sim-safe This simulator implements a functional simulator. This functional simulator is the
simplest, most user-friendly simulator in the simplescalar tool set. Unlike sim-fast, this
functional simulator checks for all instruction errors, and the implementation is crafted for
clarity rather than speed.

The sim-cache and sim-cheetah simulators simulate only the state of the memory system�
they do not keep track of the timings of events. The sim-outorder simulator does. In fact, it
simulates everything that happens in a superscalar processor pipeline, including out-of-order in-
struction issue, the latency of the di�erent execution units, the e�ects of using a branch predictor,
etc. Because of this, sim-outorder runs more slowly, but it also generates much more information
about what happens in a processor.

Because sim-outorder keeps track of timing, it can report the number of clock cycles that are
needed to execute the given program for the simulated processor with the given con�guration.

5.3.2 Running simulation experiments with SimpleScalar

A Web user interface to run simple experiments using SimpleScalar simulators is available at
http://dark.eit.lth.se/darklab/

It uses sessions based on a ID (eg your EFD-login) given as login ID at the start to be able
to keep track of all the simulations done during the laboratory session.

The main screen (�gure 7) allows you to set simulator speci�c options (defaults are �lled
in if appropriate), choose which program and which simulator to run. Only a selection of all
options are available through this user interface. It also provides access to all results produced
earlier in this session. Futhermore it provides functionality for compiling a few programs with a
special version of GCC that produces code that the simulator can run.

Note: In the course of these labs you will run a large number of simulations, and it may be
di�cult to keep track of your results unless you maintain a lab book (hard copy or on-line). This
book should contain the description of all the simulation runs you performed, your simulation
plans, comparison of results, graphs if any etc. In addition as you will start using more detailed
simulators, the simulation time will increase. A lab book which documents all the simulation
runs you performed already will help you avoid repeat runs, and will save you considerable time.
The system allows you to attach an arbitrary ID to each run, as well as it saves all results within
a session (typically one lab). Use this intelligently in order to keep better track of what you have
done.

41

http://dark.eit.lth.se/darklab/

Figure 7: Main screen

5.3.3 Available benchmarks

There is more information available online linked from the main screen.

anagram A program for �nding anagrams for a phrase, based on a dictionary.

compress (SPEC) Compresses and decompresses a �le in memory.

go (SPEC) Arti�cial intelligence; plays the game of "Go" agianst itself

applu (SPEC) Parabolic/elliptic partial di�erential equations

mgrid (SPEC) Multi-grid solver in 3D potential �eld

swim (SPEC) Shallow water model with 1024x1024 grid

perl Calculates popularity of nodes in a graph based on the PageRank algorithm from Google.

gcc (SPEC) Limited version of GCC

42

5.3.4 Test programs for compilation

http://dark.eit.lth.se/darklab/anagram.txt
http://dark.eit.lth.se/darklab/stride.txt

5.4 MatLab routines for plotting results

These routines can be downloaded from the 'Software tools for Computer Architecture' page at
http://dark.eit.lth.se/.

Use for Laboratory 4 assignment 'Cache performance':

set_assoc = [1, 2, 3, 4, 5, 6, 7, 8];

miss_rate_u = []; % miss rates obtained for unified caches

miss_rate_i=[]; % miss rates obtained for instruction caches

miss_rate_d=[]; % miss rates obtained for data caches

%nbr_sets = [16, 32, 64, 128, 256, 512, 1024];

figure(1);

plot(set_assoc, miss_rate_u(1,:),'bd-',set_assoc, miss_rate_u(2,:), 'cs-', set_assoc,

miss_rate_u(3,:), 'y^-',set_assoc, miss_rate_u(4,:), 'mx-',set_assoc, miss_rate_u(5,:),

'r+-',set_assoc, miss_rate_u(6,:), 'go-', set_assoc, miss_rate_u(7,:), 'kh-');

legend('16', '32', '64', '128', '256', '512', '1024');

grid on;

title('mgrid (Unified)'); % to be changed depending on the used benchmark

xlabel('Set Associativity (blocks/set)');

ylabel('Miss Rate');

figure(2);

plot(set_assoc, miss_rate_i(1,:),'bd-',set_assoc, miss_rate_i(2,:), 'cs-', set_assoc,

miss_rate_i(3,:), 'y^-',set_assoc, miss_rate_i(4,:), 'mx-',set_assoc, miss_rate_i(5,:),

'r+-',set_assoc, miss_rate_i(6,:), 'go-', set_assoc, miss_rate_i(7,:), 'kh-');

legend('16', '32', '64', '128', '256', '512', '1024');

grid on;

title('mgrid (Instruction)'); % to be changed depending on the used benchmark

xlabel('Set Associativity (blocks/set)');

ylabel('Miss Rate');

figure(3);

plot(set_assoc, miss_rate_d(1,:),'bd-',set_assoc, miss_rate_d(2,:), 'cs-', set_assoc,

miss_rate_d(3,:), 'y^-',set_assoc, miss_rate_d(4,:), 'mx-',set_assoc, miss_rate_d(5,:),

'r+-',set_assoc, miss_rate_d(6,:), 'go-', set_assoc, miss_rate_d(7,:), 'kh-');

legend('16', '32', '64', '128', '256', '512', '1024');

grid on;

title('mgrid (Data)'); % to be changed depending on the used benchmark

xlabel('Set Associativity (blocks/set)');

ylabel('Miss Rate');

Use for Laboratory 4 assignment 'Relation block size, miss ratio and mean access time':

ht_l1; % Hit Time for L1

43

http://dark.eit.lth.se/darklab/anagram.txt
http://dark.eit.lth.se/darklab/stride.txt

ht_l2; % Hit Time for L2

mp_l2; % Miss Penalty for L2

block_size = [16, 32, 64, 128, 256];

cpi = [];

mr_l1 = []; % Miss Rate for L1

mr_l2 = []; % Miss Rate for L2

AMAT = ht_l1 + mr_l1.*(ht_l2 + mr_l2 .* mp_l2);%Avarage Memory Access Time

figure(1);

plot(block_size, cpi,'bd-');

legend('L2 cache 128:128:4');% to be changed depending on the settings for L2

set(gca,'xtick',block_size);

title('applu'); % to be changed

grid on;

xlabel('Block size (Bytes)');

ylabel('CPI');

figure(2)

plot(block_size, AMAT,'bd-');

legend('L2 cache 128:128:4');% to be changed depending on the settings for L2

set(gca,'xtick',block_size);

title('applu');% to be changed

grid on;

xlabel('Block size (Bytes)');

ylabel('Average Memory Access Time');

44

	Laboratory 1: Pipelined Processors
	Laboratory 2: Advanced pipelining
	Laboratory 3: Cache memory
	Laboratory 4: Advanced cache; Cache coherency
	Appendix: Software
	 Pipeline simulator (mipspipe2000.exe)
	 Cache simulator mips.exe
	 SimpleScalar simulator tool set
	 MatLab routines for plotting results

