
Lund University / EITF20 / Steffen Malkowsky

EITF20: Computer Architecture
Application-Specific-Instruction-Set Processors

Steffen Malkowsky
steffen.malkowsky@eit.lth.se

1

Lund University / EITF20 / Steffen Malkowsky

Outline

p Part I: Performance Limits of GPPs
p Part II: Opportunities of ASIP
p Part III: Case Study

p Google TPU
p Part IV: Some Remarks

2

Lund University / EITF20 / Steffen Malkowsky

Outline

p Part I: Performance Limits of GPPs
p Part II: Opportunities of ASIP
p Part III: Case Study

p Google TPU
p Part IV: Some Remarks

3

Lund University / EITF20 / Steffen Malkowsky

Moore’s Law

4

p The number of transistors doubles approximately
every two years

Lund University / EITF20 / Steffen Malkowsky

Moore’s law enabled

5

p Deep Memory hierarchies
p Up to four level of caches

p Wide SIMD units
p Used in GPPs to accelerate vector processing

p Deep Pipelines
p Higher Execution speed

p Branch Prediction
p Reduce the number of pipeline flushes

p Out-of-Order Execution
p Speculative Pre-fetching
p Multithreading
p Multicore Processing

Lund University / EITF20 / Steffen Malkowsky

Dennard Scaling I

6

p Dennard observed that as technology scales, the
power consumption can remain the same.

p Example:
Transistor dimension scales by 30%

à area reduces by 50%

Circuit delay scales by 30%
à frequency increases approx. 40%

Voltage is reduced by 30%
à power reduces by 50%

Lennard Scaling failed around 2005

Lund University / EITF20 / Steffen Malkowsky

Dennard Scaling II

7

Source:
https://www.semanticscholar.org/paper/Time-Moore%3A-Exploiting-Moore%27s-Law-From-The-of-Time-Xiu/7ab3f9215c7d8369a6acdf9a3546138a71ac9fb5/figure/0

https://www.semanticscholar.org/paper/Time-Moore%253A-Exploiting-Moore%2527s-Law-From-The-of-Time-Xiu/7ab3f9215c7d8369a6acdf9a3546138a71ac9fb5/figure/0
https://www.semanticscholar.org/paper/Time-Moore%253A-Exploiting-Moore%2527s-Law-From-The-of-Time-Xiu/7ab3f9215c7d8369a6acdf9a3546138a71ac9fb5/figure/0

Lund University / EITF20 / Steffen Malkowsky

Amdahl’s Law

8

p The fundamental limit to gains of parallelization
p Only 1% serial code fragment has significant

impact on achievable many core performance

64 processors
Less than 40 speed-up

Lund University / EITF20 / Steffen Malkowsky

Summary Part I

9

p Advances in processors supported by Moore’s Law
p 1980 RISC: 25k transistors
p Today: Up to 2.5 billion transistors

p Lennard scaling supported theses advances as well
p Power remained similar with more and more transistors
p Lennard scaling failed in 2005

p Energy per operation needs to be minimized
p Utilize specific features of application domain
p Tailor architecture to the actual domain

p New opportunities for engineers
p Application Specific Instruction Processors
p Domain specific architectures

Lund University / EITF20 / Steffen Malkowsky

Outline

p Part I: Performance Limits of GPPs
p Part II: Opportunities of ASIP
p Part III: Case Study

p Google TPU
p Part IV: Some Remarks

10

Lund University / EITF20 / Steffen Malkowsky

The Opportunities

11

p SW-centric
p Modern scripting languages are interpreted, dynamically

typed and encourage reuse
p Efficient for the programmer but not for execution

p HW-centric
p Application-Specific architectures
p Design to perform extraordinary well in one domain / doing a

few tasks

p HW-/SW-centric
p Combine both
p Application-specific features but yet programmable
p Use existing languages working well or even introduce new

ones for specific domain

Lund University / EITF20 / Steffen Malkowsky

Platforms to target applications

12

p SW-centric
p Standard processors (GPP)

p Flexible and short design time
p Lack of computational capacity

p HW-centric
p Specialized Hardware (ASIC)

p Real-time performance, small size and low power
p High non-recurring engineering (NRE) costs

p Fine-grained reconfigurable architectures (FPGA)
p High calculation capacity and flexible
p Routing overhead, high power consumption
p HW oriented design approach

p HW-/SW-centric:
p Application-Specific Instruction-Set Processors

p High performance in dedicated application domain
p Short design time, SW + HW oriented design approach

Lund University / EITF20 / Steffen Malkowsky

Application-Specific Instruction-Set Processor

13

p Flexibility and Efficiency
p 2 contradicting design goals

p Optimize architecture
for specific domain

p Keep it flexible
p Keep it efficient

Source:
Synopsys

Sweet SpotFully flexible

Best
performance

The big challenge:
Find the architecture that suits
the application domain best
while still being programmable

Lund University / EITF20 / Steffen Malkowsky

Example: Matrix-Multiplication

14

Lund University / EITF20 / Steffen Malkowsky

Guidelines for ASIPs / DSAs

15

Use dedicated
memories

Invest the resources saved from
dropping advances
microarchitectural optimizations
into more arithmetic units or
bigger memories

Use the easiest form of parallelism

Reduce data size and type to the
simplest needed for the domain

Use domain specific language whenever possible

Lund University / EITF20 / Steffen Malkowsky

Algorithm / Architecture Co-Design

16

Algorithm
Selection

SW Implementation

Simulator

Application
Domain &

Requirements

Run-Time

Processor Model

Simulation

Implementation

Algorithm

Not satisfiedsatisfied

Data Types

Architecture

VLIW SIMD Multi-
Core

Instruction Set

Scalar Vector Custom

Designers need to analyze
the domain, specifically:
- Algorithms
- Hardware
- Software

Lund University / EITF20 / Steffen Malkowsky

Outline

p Part I: Performance Limits of GPPs
p Part II: Opportunities of ASIP
p Part III: Case Study

p Google TPU
p Part IV: Some Remarks

17

Lund University / EITF20 / Steffen Malkowsky

Example: Deep Neural Networks

18

p Inspired by neurons of the brain
p Computes the non-linear “activation” function of the

weighted sum of input values
p In general practitioners select existing designs that

showed to work well
p Training (learning)

p Calculate weights using backpropagation of the error
p Training may take an extremely long

p Inference: Use the neural network for classification

Lund University / EITF20 / Steffen Malkowsky

Convolutional Neural Networks

19

p Widely used in computer vision
p Each layer raises the level of abstraction

p From detecting a line, to an edge, to a car etc.

Source:
https://medium.com/dataminingapps-articles/understanding-deep-learning-in-5-minutes-cc140a10078b

https://medium.com/dataminingapps-articles/understanding-deep-learning-in-5-minutes-cc140a10078b
https://medium.com/dataminingapps-articles/understanding-deep-learning-in-5-minutes-cc140a10078b

Lund University / EITF20 / Steffen Malkowsky

Convolutional Neural Networks

20

p Input Image is transformed to an output feature map

Fetch input image or output from previous layer
Convolution of the input vector with the (learned) weights
Apply non-linear function

Lund University / EITF20 / Steffen Malkowsky

Convolutional Neural Networks

21

p Each layer may consist of several kernel, each
having different weights and producing a different
output feature map

p E.g. colored pixel with red, green and blue

Input
features

Output
features

Stencil

Lund University / EITF20 / Steffen Malkowsky

Convolutional Neural Networks

22

p Total number of weights
p NumFM[i] x NumFM[i-1] x DimSten[i]2

p Total number of operations
p 2 x DimFM[i]2 x # of weights

p Operation per weight
p 2 x DimFM[i]2

p Example
CNN with

DimFM[i-1] = 28
DimFM[i] = 14
DimSten[i] = 3
NumFM[i-1] = 128
NumFM[i] = 64

#weights = 73 k
#operations = 28 M

Lund University / EITF20 / Steffen Malkowsky

Convolutional Neural Networks

23

p Efficiently implemented kernels needed

p Arithmetic units
p Matrix-Matrix multiplication
p Matrix-Vector Multiplication

p Memory
p Stencil operation
p Efficient access

p Accelerated functionalities
p Non-linear functions

p ReLU
p Sigmoid
p Hyperbolic tangent

Lund University / EITF20 / Steffen Malkowsky

Google’s Tensor Processing Unit (TPU)

24

p Google’s DNN accelerator
p Used for inference

p Large Arithmetic Unit
p 256x256 8-bit multiplication unit

p Memory
p Large software managed on-chip memory

p Utilized as co-processor attached on PCIe-bus

Lund University / EITF20 / Steffen Malkowsky

Google TPU Architecture

25

p Attached to server via PCIe Interface
p Instructions send from server to TPU and locally stored in

instruction buffer (no instruction fetch)

Lund University / EITF20 / Steffen Malkowsky

Google TPU Architecture

26

p Heart is the matrix multiply unit (multiplication or convolution)
p Reads 256 values per clock cycle

p Results are stored in accumulators
p Non-linear functions calculated in activation hardware

Lund University / EITF20 / Steffen Malkowsky

Google TPU Architecture

27

p Weights fetched via on-chip weight FIFO reading from an
8GiB off-chip DRAM

p Input data and intermediate results in 24 MiB unified buffer
p DMA controller handles transfer of data

Lund University / EITF20 / Steffen Malkowsky

Google TPU Matrix Multiply Unit

28

Lund University / EITF20 / Steffen Malkowsky

Google TPU Matrix Multiply Unit

29

Lund University / EITF20 / Steffen Malkowsky

Google TPU Matrix Multiply Unit

30

Lund University / EITF20 / Steffen Malkowsky

Google TPU Area Distribution

31

p First version TPU
p 25% for matrix multiply unit
p 30% for unified buffer

Lund University / EITF20 / Steffen Malkowsky

Google TPU ISA

32

p CISC instruction set with repeat field
p No program counter
p No branch instructions
p CPI between 10 and 20

p Instructions
p READ_HOST_MEMORY

p Read memory from CPU into the unified memory

p READ_WEIGHTS
p Read weights from weight memory into the weight FIFO

p MatrixMatrixMultiply/Convolve
p Perform matrix-matrix, matrix-vector, elementwise matrix-multiply, an

elementwise vector multiply or convolution
p Utilize repeat field to multiply a B x 256 with a 256x256 to receive a B x

256 output
p Store result in unified buffer

p Activate
p Compute the activation functions output

p WRITE_HOST_MEMORY
p Write data from unified buffer into host memory

Lund University / EITF20 / Steffen Malkowsky

Google TPU Architecture

33

Lund University / EITF20 / Steffen Malkowsky

Google TPU Performance

34

Lund University / EITF20 / Steffen Malkowsky

Google TPU Performance

35

Lund University / EITF20 / Steffen Malkowsky

Google TPU Deployed

36

Up to 64 TPUs may be combined to achieve
11.5 petaops

of performance

Lund University / EITF20 / Steffen Malkowsky

Guidelines for ASIPs / DSAs

37

p How TPU follows the guidlines
p Use dedicated memories to minimize the distance over which

data is moved
p 24 MiB unified buffer, optimized for access of 256 bytes at a time
p 4 MiB accumulators each 32-bit wide
p 8-bit weights stored in off-chip DDR3 RAM

p Invest the resources saved from dropping advanced
microarchitectural optimizations into more arithmetic units
or bigger memories
p 28 MiB dedicated memory (60% compared to server CPU)
p 65,538 8-bit ALUs (250 times as many as server CPU)

p Use the easiest form of parallelism that matches the
domain
p Two-dimensional SIMD pipelined with systolic structure

Lund University / EITF20 / Steffen Malkowsky

Guidelines for ASIPs / DSAs

38

p How TPU follows the guidelines
p Reduce data size and type to the simplest needed for the domain

p TPU is mainly optimized for 8-bit computations
p Supports up to 16-bit by running multiply unit in quarter rate

configuration
p No support for 64-bit or floating point

p Use a domain specific programming language
p Programmed using TensorFlow programming framework

Lund University / EITF20 / Steffen Malkowsky

Outline

p Part I: Performance Limits of GPPs
p Part II: Opportunities of ASIP
p Part III: Case Study

p Google TPU
p Part IV: Some Remarks

39

Lund University / EITF20 / Steffen Malkowsky

Take a Look at History

40

p GPPs and ASIPs are very different
p Don’t be ignorant of research and architectures in past
p Something that did not work for GPPs may still be a

good design choices for ASIPs

p Example: Google TPU
p Utilizes CISC instructions

p Small instruction set
p Specialized instruction set that benefits from complex instructions

p Nowadays all popular processors utilize RISC instructions

p Another Example:
VLIW – Very Long Instruction Word

Lund University / EITF20 / Steffen Malkowsky

Very Long Instruction Word (VLIW)

41

p Multiple instructions packed into one instruction
p Each slot for a dedicated functional unit
p Latency of each unit fixed
p Compiler schedules the slots during compile time

Lund University / EITF20 / Steffen Malkowsky

From RISC to Intel/HP Itanium

42

p Intel developed jointly with HP starting in 1994
p EPIC – “Explicitly Parallel Instruction Computing”
p Many companies gave up RISC for Itanium

p Microsoft
p SGI
p Itachi

pVLIW for GPPs ended in a failure

pWhy? Any ideas?

Lund University / EITF20 / Steffen Malkowsky

VLIW issues

43

p “The Itanium approach…was supposed to be so terrific –
until it turned out that the wished-for compilers were
basically impossible to write”

- Donald Knuth, Stanford

p Compiler could not handle dependencies
p Code size explosion (also due to NOPs)
p Cannot predict complex branches offline

p VLIW are a failure for GPPs, but could they be an option
for ASIPs?

Lund University / EITF20 / Steffen Malkowsky

Tools for ASIP Design

44

p Cadence Tensilica Platform
p Modifiable architectures with pre-configured architecture and

selectable accelerators
p Fixed pipeline stages
p Add customized instructions and hardware

p Synopsys ASIP Designer
p Design a fully custom ASIP from scratch using nML processor

description language
p Full flexibility including pipeline stages
p Add own peripherals designed in HDL or HLS
p Compiler is automatically generated based on processor

description

p RISC-V
p Can serve as a good basis for further domain specific

acceleration

Lund University / EITF20 / Steffen Malkowsky

Summary

45

p Simply scaling will not provide the required performance
boost for future applications
p Energy per operation becomes more and more important

p Processor have to be ”specialized” for the application domain
p Designers need to understand hardware, software and algorithms to

develop cutting edge designs
p Tailor architecture to specific needs
p Co-processors, accelerators or complete architectures help solbing

bottlenecks

p A look in past research may help you boost domain specific
performance
p CISC
p VLIW
p Systolic arrays
p …

Lund University / EITF20 / Steffen Malkowsky

References

46

p Some interesting presentations
p A New Golden Age for Computer Architecture History, Challenges, and Opportunities
p DARPA ERI Summit 2018: The End of Moore’s Law & Faster General Purpose Computing,

& a New Golden Age

p Papers
p 50 years of Computer Architecture: From the Mainframe CPU to the Domain-Specific TPU

and the Open RISC-V Instruction Set

pOnline Sources
p Slides to The End of Moore’s Law & Faster General Purpose Computing, & a New Golden

Age
p DNNs Tutorial
p CNN to try yourself

p Course Book
p Computer Architecture, 6th edition, chapter 7, Domain-Specific Architectures

https://www.youtube.com/watch%3Fv=uyc_pDBJotI
https://www.youtube.com/watch%3Fv=uqWFHDnau1U
https://ieeexplore.ieee.org/stamp/stamp.jsp%3Farnumber=8310168
https://p4.org/assets/P4WS_2019/Speaker_Slides/9_2.05pm_John_Hennessey.pdf
http://deeplearning.net/tutorial/
http://scs.ryerson.ca/~aharley/vis/conv/

