
EITF12
Project manual

Digitala projekt

EITF12

Purpose of the document
• To understand what a microcontroller is
• To understand how to use a microcontroller
• To give a very brief introduction to C programming
• To give a summery of commonly used schematic symbols

Christoffer Cederberg
Jonathan Sönnerup

2021

Contents

1 Introduction to the AVR Microcontroller 2
1.1 AVR Architecture . 2
1.2 Memory Layout of a Program . 3
1.3 AVR Toolchain . 5

1.3.1 GCC - GNU Compiler Collection . 6
1.3.2 avr-libc . 7
1.3.3 The Atmel-ICE Debugger and atprogram . 7

1.4 Programming Basics . 9
1.4.1 C Data Types in an AVR . 9

1.5 Exercises . 10

2 I/O Ports 12

3 Timers 14
3.1 PWM with an AVR Timer/Counter . 14
3.2 Fast PWM Mode . 15
3.3 Time measurement using the AVR Timer/Counter 1 . 18
3.4 Exercises . 19

4 USART - A Serial Communication Protocol 20
4.1 Data register . 21
4.2 USART control and status . 21
4.3 USART Baud Rate Register UBRR0H and UBRR0L . 22
4.4 Exercises . 24

5 Volts to Bits - Analog-to-Digital Conversion 25
5.1 ADC Configuration . 26
5.2 Exercises . 28

6 Answers to Exercise Questions 29
6.1 Exercise . 29
6.2 Exercise 1 . 30
6.3 Exercise 2 . 31
6.4 Exercise 3 . 32
6.5 Exercise 4 . 33
6.6 Exercise 5 . 33

1

Chapter 1

Introduction to the AVR
Microcontroller

The microcontroller1 used in this course is the ATmega1284. A block schematic of the microcontroller is
depicted in Figure 1.1.

Many of the peripheral units will be used during the this course, including the universal asynchronous/syn-
chronous receiver and transmitter (USART X), the analog-to-digital converter (ADC), timers/counters (TC
X), the IO-ports, and external interrupts (EXTINT). Do not worry, they will all be explained later on. The
pinout of the ATmega1284 is shown in Figure 1.2.

1.1 AVR Architecture
The ATmega family of microcontrollers is a modified Harvard architecture 8-bit RISC which is commonly
referred to as AVR2. For comparison, The ARM Cortex A53 processor (which the raspberry pi 3 uses), is a
64-bit RISC architecture, with 4 cores.

In a Harvard architecture the program and data memory is separated. The main reason for this is to speed
up the execution. With the memory divided into two parts, reading instructions and reading from / writing
to the RAM can be done simultaneously. In Figure 1.3, a block diagram of the CPU is shown.

As seen in the block diagram, the CPU has 32 8-bit registers, see the block called “Register file.” These
registers are used as small and fast storage locations for the data that is currently used. The data may
come from the larger data memory, from some of peripherals (that is, the USART unit, the analog-to-digital
converter, etc.), or machine instructions. The data is often manipulated or examined by the ALU (Aritmetic
Logic Unit). The output from the ALU can be stored in a register or in the data memory to be used later on,
just like a variable in any programming language. The AVRs can be clocked from an internal RC oscillator,
by an external clock or with the help an external crystal.

1A microcontroller is a small computer, including memory, a CPU, programmable input/output ports, etc., all fitted inside
a single integrated circuit

2The acronym AVR is somewhat mysterious. There is no definite answer to what it stands for. The manufacturer, Atmel
(which was bought by Microchip in 2016), has given different explanations over the years. “Advanced Virtual Risc” and the
name of the creators “Alf (Egil Bogen) and Vegard (Wollan) ’s Risc processor” are two of them.

2

I/O
PORTS

Figure 1.1: Block diagram for an ATmega1284.

1.2 Memory Layout of a Program
To program the microcontroller, the C programming language will be used. When a C program is compiled,
the code will be divided into the the following segments:

.text segment This segment contains the actual program, that is, the instructions in machine code.

.data segment The values of the initialized global or static variables reside here.

.bss segment In contrast to the .data, this is the location where the values of the uninitialized global or
static variables will be stored.

stack and heap The stack and heap are regions in the RAM. The stack is used for temporary storage in a
function (subroutine), and the heap is a region used for dynamically allocated memory.

When the program is transferred to the microcontroller, it is stored in the FLASH memory. On start-up
the .data-segment is transferred to the RAM, see Figure 1.4. During execution, each instruction is fetched
from the .text-segment in the FLASH, decoded, and executed.

The separation between .data and .bss is done in order to save memory. The values of each initialized

3

(PCINT8/XCK0/T0)

(PCINT9/CLKO/T1)

(PCINT10/INT2/AIN0)

(PCINT11/OC0A/AIN1)

(PCINT12/OC0B/

(PCINT13/MOSI)

(PCINT14/OC3A/MISO)

(PCINT15/OC3B/SCK)

(PCINT24/RXD0/T3)

XTAL2

XTAL1

(PCINT25/TXD0)

(PCINT26/RXD1/INT0)

(PCINT27/TXD1/INT1)

 (PCINT28/XCK1/OC1B)

(PCINT29/OC1A)

(PCINT30/OC2B/ICP1)

(ADC0/PCINT0)

(ADC1/PCINT1)

(ADC2/PCINT2)

(ADC3/PCINT3)

(ADC4/PCINT4)

(ADC5/PCINT5)
(ADC6/PCINT6)

(ADC7/PCINT7)

(TOSC2/PCINT23)

(TOSC1/PCINT22)

(TDI/PCINT21)

(TDO/PCINT20)

(TMS/PCINT19)

(TCK/PCINT18)

(SDA/PCINT17)

(SCL/PCINT16)

(OC2A/PCINT31)

Power

Ground

Programming/debug

Digital

Analog

Crystal/Osc

Figure 1.2: Pinout of the ATmega1284.

global or static variable is stored in the flash. The required space for the .data section is equal to the sum of

4

Figure 1.3: Block diagram for a AVR processor.

the individual sizes of the initialized variables. An uninitialized variable, on the other hand, does not need
to have an initial value. This creates an opportunity for optimization, as they can all be initialized to the
same value. Therefore the memory space needed for the initialization data is decreased.

1.3 AVR Toolchain
To develop an executable application for a target processor, numerous tools are needed. Together they form
what is called a toolchain (since they are used sequentially). An overview of the tools that are needed to

5

FLASH RAM
.text

.data

.bss

.data

.bss

heap

stack

Figure 1.4: Memory layout and the content of the RAM and FLASH memory.

generate an executable application for the AVR microcontrollers will be provided in this section. Note that
this is very similar to other processors as well, such as Intel Core i9, AMD Ryzen, and ARM processors.

1.3.1 GCC - GNU Compiler Collection
The GNU Compiler Collection is a versatile compiler system. It is comprised of many different front-end
compilers for various languages and has many back-ends, that is, it can produce assembly code targeting a
variety of different processors. The front-ends and back-ends share some generic parts of the compiler which
includes optimization.

If the host system that the compiler runs on differs from the target system, the compiler is a cross-compiler
(if the host and target system is the same it is a native compiler). The version of GCC that will be used
in this course is called AVR GCC and it is a cross-compiler, since it produces code for a different processor
(you cannot run the executable on your own computer). AVR GCC supports three different languages, C,
C++, and Ada.

In many cases, a compiler generates the actual machine code, but this is not the case for GCC since the
output is in assembly language. Fortunately enough, AVR GCC is also a driver for other programs that are
needed to produce an executable output. It uses an open source project called GNU Binutils (GNU Binary
Utilities), which contains an assembler and a linker. The assembler translates the assembly code to machine
code, and the linker links all of the object files to a executable file.

The output from avr-gcc is an .elf-file. The acronym stands for Executable and Linkable Format and
it is similar to Windows .exe-file or a .DMG and .APP for Mac OS. The .elf-file contains an abundance
of information which is designated for an operating system. Since there is no operating system on the
microcontroller, this information serves no purpose and thus it is not needed in order to run the application
on the microcontroller. The file that should be transferred to the program memory should just contain the
program (instructions in machine code) and the data variables. With the program objcopy, which is part
of the GNU Binutils, the parts that should be transferred can be extracted (.text, .data and .bss) from
the .elf-file. This is known as a .hex-file.

6

1.3.2 avr-libc
With only GCC and Binutils it is not possible to create an executable application. A key ingredient is
missing, namely a standard C Library. There is a couple of different open source projects that provide just
that. The AVR Toolchain commonly uses one of them, namely the avr-libc. It is a subset of the standard
C language library and contains things like AVR-specific macros, AVR start-up code, files that contain the
addresses of port and register names (header files), and a floating point library. All the functions that the
standard C library contains are available in avr-libc. Some of the standard C functions have limitations
or other problems which the user needs to be aware of before using them. Luckily enough, avr-libc is
well documented (https://www.nongnu.org/avr-libc/user-manual/pages.html). Additionally avr-libc
contains many AVR-specific functions.

1.3.3 The Atmel-ICE Debugger and atprogram
To transfer the hex-file to the microcontroller the Atmel-ICE programmer and debugger, see Figure 1.5, and
a software tool called atprogram is used.

Figure 1.5: The Atmel-ICE programmer and debugger.

The Atmel-ICE programmer and debugger needs to be connected to the microcontroller, see Figure 1.6.

The end of the ribbon cable that is not connected to the pin header on the PCB should be connected to the
connector labeled with “AVR” on the Atmel ICE programmer.

The steps from source code to a running application are summarized in Figure 4.3.

7

https://www.nongnu.org/avr-libc/user-manual/pages.html

Figure 1.6: Connecting the debugger.

Source code (C, asm etc)

Object files (.o)

Executable file (.elf)

Hex file (.hex)

MCUavr-gcc

avr-objcopy

Atmel ICE and atprogram

avr-gcc

Figure 1.7: Summary of the steps from source code to transfer the binary to the microcontroller.

8

1.4 Programming Basics
There is a C compiler for almost every processor encountered. Thus, C is the natural language to use when
dealing with low-level applications. Here, we introduce the basics of the C programming language and also
show specific details regarding the AVR processor. The structure of a basic C program is shown in Listing 1.1.
#include <snape.h>

char glob = 42;
int unknown;

int main()
{

char a = 1;

while (1) {
perform_dark_arts();

}
}

Listing 1.1: A basic C program.

First of all, we need a main function, just like Java’s “public static void main.” This is where code
begins to execute. In the main function, we define a local variable and then we perform some dark magic.
The perform_dark_arts function is written in another C-file or library. In order to use it, we must include
it, just like java’s import statement. The function is declared in snape.h and implemented in snape.c. To
use the functions, the .h file is included, as seen at the top of the file. Above the main function, two global
variables are defined, one initialized to 42, the other one uninitialized. These will end up in different memory
segments, see Section 1.2.

1.4.1 C Data Types in an AVR
In Table 1.1 below the most commonly used data types in C are listed. In order to use the xx_t types,
stdint.h must be included.

Table 1.1: C data types.

Name Size (byte) Min Value Max Value
char 1 -128 127
unsigned char 1 0 255
int8_t 1 -128 127
uint8_t 1 0 255
int16_t 2 −215 215 − 1
uint16_t 2 0 216 − 1
int 2 −215 215 − 1
unsigned int 2 0 216 − 1

9

1.5 Exercises
Answers to the questions can be found in Appendix 6.

CPU Architecture
1.1 What is the difference between a Harvard and a Von Neumann architecture?

1.2 What is the frequency of a modern processor, say Intel or AMD?

1.3 How many CPU cores does an AVR have? What about the latest AMD Ryzen or Intel Core i9?

1.4 What is the size of the RAM in the Atmega1284?

1.5 What is the size of the flash memory in the Atmega1284?

1.6 How much RAM do you have in a modern computer?

1.7 Using an Atmega1284, how many instructions can you execute in 1 second, if each instruction takes
one clock cycle each?

1.8 Running at 8 MHz, how many nanoseconds does each instruction have to execute?

1.9 How is the value 0x12FC6701 stored in a memory using little-endian?

1.10 If your compiled code resides in the address range 0x00-0xFF in the processor, will you overwrite the
program if you store an array starting at address 0x00? The target processor is an AVR.

C Programming
1.11 What is the size of a char for an AVR?

1.12 What is the size of an int for an AVR?

1.13 What is the size of an unsigned int for an AVR?

1.14 If you store -2 in an int variable, what is the hexadecimal representation?

1.15 If you store -2 in an unsigned int, what is the hexadecimal representation?

1.16 If you add two 8-bit numbers, how many bits does the result require?

1.17 If you multiply two 8-bit numbers, how many bits does the result require?

1.18 Given the following C code,

10

int alpha = 1;
char vec[3] = { 1, 2, 3 };
char state;

int main()
{

static char statham = 666;

for (int i = 0; i < 10; i++) {
int looper = 12;

}

while (1) {
// wait for better times...

}
}

How many variables are created, how large are they, and in which memory segments are they stored?

11

Chapter 2

I/O Ports

The microcontroller has 32 general purpose I/O pins. They are divided into four groups called ports. The
name of the ports are Port A, B, C, and D. In Figure 1.2 the pin name is shortened PB0-PB7 for port B
(the same applies to the other ports). With this piece of hardware it is possible to change the state (high or
low, i.e. 5V or 0V) of an individual I/O pin. The I/O ports can also be configured to be an input.

Each port has three different registers. For Port A the name of these registers are DDRA, PINA and PORTA.
Each port contains 8 pins and thus the corresponding registers have the same length. In Table 2.1 below,
their functionalities are described.

Table 2.1: I/O port registers and their corresponding functionality.

Register Description
DDRx Specifies the data direction (input or output)
PINx Read the state of the port, if it is an input
PORTx Read and write to the port, if it is an output

To set the first pin on Port B, PB0, as an output and the pin high, follow the steps below.

• Set the data direction register to 0x01 (hexadecimal) or 0b00000001 (binary).

• Set the pin PB0 to high by writing 0x01 or 0b00000001 to the port register.

When writing to a I/O port register (or any other register, for that matter) it is important to use the logic
operator, OR (|), instead of directly assigning a value. By using the “|” operator, a bitwise OR operation is
performed with the content of the register and the value 0b00000001. By doing so, it is ensured that only
the specified bit is changed. This is good, since in the majority of cases there will be different types of devices
connected to the same port. To clear a bit the bitwise AND operator, “&”, can be used in combination with
the bitwise complement operator, “~”.

In Listing 2.1 a simple program that toggles the state of I/O pin 3 on port B with a frequency of 0.5 Hz can
be seen. The comment in the listing explains the steps to clear a bit.

12

#define F_CPU 16000000UL
#include <avr/io.h>
#include <util/delay.h>

int main()
{

DDRA |= 0b00001000;

while (1) {
PORTA |= 0b00001000;
_delay_ms(1000);
PORTA &= ~(0b00001000);
_delay_ms(1000);

}
}

// How does PORTA &= ~(0b00001000); clear a the bit???
// Content of PORTB register: 0b00001000
// Bitwise complement of 0b00001000: 0b11110111
// Bitwise AND: 0b00000000

Listing 2.1: A basic C program.

A common use-case for an I/O pin is to control a LED. See Figure 2.1.

(PCINT8/XCK0/T0)

(PCINT9/CLKO/T1)

(PCINT10/INT2/AIN0)

(PCINT11/OC0A/AIN1)

(PCINT12/OC0B/

(PCINT13/MOSI)

(PCINT14/OC3A/MISO)

(PCINT15/OC3B/SCK)

(PCINT24/RXD0/T3)

XTAL2

XTAL1

(PCINT25/TXD0)

(PCINT26/RXD1/INT0)

(PCINT27/TXD1/INT1)

 (PCINT28/XCK1/OC1B)

(PCINT29/OC1A)

(PCINT30/OC2B/ICP1)

(ADC0/PCINT0)

(ADC1/PCINT1)

(ADC2/PCINT2)

(ADC3/PCINT3)

(ADC4/PCINT4)

(ADC5/PCINT5)
(ADC6/PCINT6)

(ADC7/PCINT7)

(TOSC2/PCINT23)

(TOSC1/PCINT22)

(TDI/PCINT21)

(TDO/PCINT20)

(TMS/PCINT19)

(TCK/PCINT18)

(SDA/PCINT17)

(SCL/PCINT16)

(OC2A/PCINT31)

Power

Resistor

LED

Figure 2.1: A LED and a resistor connected to PB3 on the microcontroller.

13

Chapter 3

Timers

A timer/counter is a hardware peripheral that essentially counts pulses. The most common used input
to a timer is the CPU clock signal. The counter value will be incremented once every clock cycle. The
timer/counter unit that is used in the AVR family contains a prescaler (among other things). With the
prescaler the input to the timer, that is, the clock signal, can be divided with a selectable factor ranging
from 1 to 1024. If the CPU clock frequency is 16 MHz results in that the time between a counter increment
can range from 62.5 ns to 64 µs. The count limit of the timer is given by its word length. The Atmega1284
has two 8-bit and two 16-bit timers and thus, it can count from 0 to 255 or from 0 to 65535.

3.1 PWM with an AVR Timer/Counter
A pulse width-modulated (PWM) signal is a pulse train where the pulse width is modulated but the period
is, in most cases constant. See Figure 3.1. The relationship between the active time and the period is referred
to as the duty cycle, see Equation 3.1 below.

D = PW

T
, where D is the duty cycle, PW is the pulse width and T is the period (3.1)

Time [s]

Amplitude
Period

Pulse width

Figure 3.1: Pulse width modulation.

Such a signal can be used for a variety of things. For example it can be used to produce audio, controlling
the rpm of a DC motor, or to adjust the intensity of an LED.

The timer/counter units can, as the section title implies, be used to produce a pulse width modulated (PWM)
signal that will be available on certain I/O pins. Each timer/counter unit can control at least two I/O pins

14

individually. Each pin is called a channel. The channels are labeled A, B, and so on. The pins associated with
the timer/counter PWM functionality are named OC (Output Compare) followed by a suffix that denotes
which timer/counter unit and channel it is connected to. For timer/counter 3 Channel A is named OC3A and
thus OC3B for Channel B.

The registers associated with timer/counter 3 can be seen in Table 3.1. Not all of them are need during the
laboratory exercises.

Table 3.1: Timer 3 registers.

Register Description
TCCR3A Control Register A
TCCR3B Control Register B
TCCR3C Control Register C
TCNT3 Counter Value
ICR3 Input Capture Register 3
OCR3A Output Compare Register A
OCR3B Output Compare Register B
TIMSK3 Interrupt Mask Register
TIFR3 Interrupt Flag Register

For detailed information, please refer to page 187-198 in the data sheet.

3.2 Fast PWM Mode
There are several varieties of a PWM signal that can be generated with an AVR timer/counter. Here is a
description on how to initialize timer/counter 3 to generate “fast PWM” with ICR3 as top. For that purpose
an output compare register, OCR3A or OCR3B, is used together with the counter value register. The desired
behaviour is as follows. When the counter value register is zero, the selected OCR3 pin is set to high. As the
timer increments the value, it is constantly compared with the value of the output compare register. When
they match, the OCR3 pin is cleared (set to low). When the counter value is the same as the value in register
ICR3 the timer/counter overflows and the output pin is set to high. After this the procedure starts again.
See Figure 3.2 and 3.3.

TCNT3++ TCNT3 = OCR3?

Set OCR-pin low

TCNT3 = ICR3? Set OCR-pin high
and reset TCNT3

yes

no yes

no

Figure 3.3: Flowchart describing how the timer/counter creates a “fast PWM” signal.

15

Count

Time

Amplitude

Time
Compare match

Count register zeroed

ICR3

Figure 3.2: Pulse width modulation with an AVR timer/counter.

By following the steps below the timer/counter unit will be initialized as described. The timer/counter
registers can be seen in Table 3.2.

• In control register A, TCCR3A, the Compare Output Mode for Channel A is selected by bit COM3A1 and
COM3A0. For Channel B the corresponding bits are COM3B1 and COM3B0. The bits should be set so that
the OC3A or OC3B pin gets cleared on a compare match. For more details, please refer to Table 17-9 for
B on page 187-189 in the data sheet. Both channels can be found on Port B. For this reason it does
not matter which one you choose, since all I/O pins are connected to LEDs. The two I/O pins that
are connected to Channel A and B are highlighted with red in Figure ??.

• Select Fast PWM with ICR3 as top by setting the Waveform Generation Mode Bits WGM30, WGM31,
WGM32 and WGM33 accordingly. See Table 17-11 on page 188-189 in the data sheet. Having ICR3 as top
means that at this value the timer will restart, that is, clearing the counter register and start from zero
again. See Figure 3.2. The Waveform Generation Mode Bits can be found in control register A and B.

• Configure the data direction register so that the OC3A or OC3B becomes an output.

• Set the prescaler bits, CS30, CS31 and CS32 in the timer/counter control register TCCR3B so that an
appropriate division factor is used. See Table 17-12 on page 190-191 in the datasheet.

16

Table 3.2: Timer 3 registers.

Register Description
TCCR3A Control Register A
TCCR3B Control Register B
TCCR3C Control Register C
TCNT3 Counter Value
ICR3 Input Capture Register 3
OCR3A Output Compare Register A
OCR3B Output Compare Register B
TIMSK3 Interrupt Mask Register
TIFR3 Interrupt Flag Register

17

3.3 Time measurement using the AVR Timer/Counter 1
In order to measure time with the timer/counter, the prescaler bits (CS10, CS11 and CS12) need to be set.
They are found in the timer/counter control register TCCR1B. These bits control how fast the timer/counter
will increment the counter value register, that is, TCNT1. For time measurement, this is all that has to
be done to start the timer, that is, the counter value register will be incremented at every pulse from the
prescaler. Before a time measurement is done, the counter value register needs to be set to a known value
(preferably zero). To stop the timer from incrementing the counter value register, the prescaler bits should
be set to zero. This action disconnects the clock signal from the timer prescaler.

18

3.4 Exercises
Answers to the questions can be found in Appendix 6.4.

Signals
3.1 You have a continuous stream of pulses. The pulses are high (5V) for 20 ms, and low (0V) for 60 ms.

(a) What is the period time of the signal?

(b) From above, what is the frequency of the signal?

(c) From above, what is the duty cycle?

3.2 The RMS value is defined as the amount of AC (alternating current) power that produces the same
effect as DC (direct current) power. For an AC signal, u(t), it can be calculated as,

uRMS =

√
1
T

∫ T

0
u(t)2dt,

where T is the period. Use the above formula to calculate the RMS value for the pulse signal from the
above exercises.

3.3 What is the RMS value for a general square wave with amplitude Vp and duty cycle D? Use the
integral formula above.

3.4 Suppose you have a heater at home that you want to control using PWM. You measured the voltage to
the heater when it has a comfortable temperature. The measured value is 10V DC. You have a relay
capable of handling 25V, which you can control using PWM. What do you need to set the duty cycle
to in order to get the same power to the heater, thus the same temperature?

19

Chapter 4

USART - A Serial Communication
Protocol

A microcontroller is often used to gather some sort of information and then send it to a computer for
analysis. Another typical application is that a computer send commands to a microcontroller, which then
performs an action that corresponds to the received command. This can be done with the USART peripheral
device inside the microcontroller. The abbreviation USART stands for Universal Synchronous Asynchronous
Receiver and Transmitter. With this device, the data is sent bit by bit. The transfer rate, that is, bits/s, is
referred to as the baud rate. Each data package consists of one start bit, a number of data bits, a parity bit
(which is optional), and one or two stop bits. See Figure 4.1.

LSB
bit

MSB
bit PStart Sp1 Sp2Idle

Idle

Start

Figure 4.1: UART data package.

There are two versions of this type of communication, one is asynchronous and one is synchronous. The
synchronous version requires that a clock signal is connected between the two devices. The more common
is the asynchronous version, which is usually referred to as UART (Universal Asynchronous Receiver and
Transmitter). This is the version that is going to be used during the laboratory exercises. Each UART
device consists of a transmitter and a receiver. The receiver is often labeled Rx and the transmitter Tx. See
Figure 4.2.

Device 1

Tx

Rx

Device 2

Rx

Tx

Figure 4.2: UART communication between two devices.

20

Before the communication starts, the devices needs to be configured, that is, the mode of operation, baud
rate, the number of data bits, stop bits, and parity1 mode has to be selected. This is done by setting bits
in the status and control registers of the USART device that corresponds to these options. The registers of
the USART device for the used microcontroller can be seen in Table 4.1. For a detailed version, please refer
to page 257-265 in the data sheet.

Table 4.1: Registers of the USART 0 unit.

Register Description
UDR0 USART I/O Data Register 0
UCSR0A USART Control and Status Register 0 A
UCSR0B USART Control and Status Register 0 B
UCSR0C USART Control and Status Register 0 C
UBRR0L USART Baud Rate 0 Register Low byte
UBRR0H USART Baud Rate 0 Register High byte

4.1 Data register

TXB/
RXB 7

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TXB/
RXB 6

TXB/
RXB 5

TXB/
RXB 4

TXB/
RXB 3

TXB/
RXB 2

TXB/
RXB 1

TXB/
RXB 0

Figure 4.3: UART data Register.

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the same I/O
address referred to as USART Data Register or UDRn2. The Transmit Data Buffer Register (TXB) will be
the destination for data written to the UDR1 Register location. Reading the UDRn Register location will
return the contents of the Receive Data Buffer Register (RXB).

4.2 USART control and status
Control and status register A - UCSR0A:
Only two bits in this register is important for the laboratory exercises, UDRE0 and RXC0. They can be used
while transmitting and receiving data.

Control and status register B - UCSR0B:
The only important bits in this register are the bits that enable the USART transmitter and receiver.

Control and status register C - UCSR0C:
The default value of UMSEL0[1:0], UPM0[1:0], USBS0 and UCSZ0[2:0] initializes the USART unit as following:

• USART mode is asynchronous,

1The parity is used as an error detection feature, but it will not be used during the lab exercise.
2When coding, the n in UDRn should be replaced with 0 since it is USART0 that will be used. This goes for all names

containing an n.

21

• parity mode is disabled,

• one stop bit and

• the frame size is 8-bits.

During the laboratory exercises there is no need to change this configuration.

4.3 USART Baud Rate Register UBRR0H and UBRR0L

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

UBRR7 UBRR6 UBRR5 UBRR4 UBRR3 UBRR2 UBRR1 UBRR0

UBRR11 UBRR10 UBRR9 UBRR8

Figure 4.4: UART data Register.

Bits 11:0 – UBRR011:0: USART Baud Rate This is a 12-bit register which contains the USART baud
rate. The UBRR0H contains the four most significant bits and the UBRR0L contains the eight least
significant bits of the USART n baud rate. Ongoing transmissions by the Transmitter and Receiver
will be corrupted if the baud rate is changed. Writing UBRR0L will trigger an immediate update of the
baud rate prescaler.

Baud Rate
[bps] fosc = 16.0000MHz and U2X = 0 Error rate

2400 416 -0.1%
4800 207 0.2%
9600 103 0.2%
14.4k 68 0.6%
19.2k 51 0.2%
28.8k 34 -0.8%
38.4k 25 0.2%
57.6k 16 2.1%

To write a value to both UBRR0L and UBRR0H “simultanously” use the macro in the listing below.

22

UBRR0 = 103;
// alternatively
UBRR0H = (103 >> 8);
UBRR0L = 103;

Listing 4.1: Test.

23

4.4 Exercises
Answers to the questions can be found in Appendix 6.3.

Communication
4.1 The maximum transfer speed in the Atmega is 2.5 Mbit/s. What is the fastest transfer speed of the

SATA protocol used for SSD drives in a modern computer? What about USB 3.0?

4.2 Using UART with 1 start bit and 1 stop bit, sending data 8 bits, how much overhead do you get?

4.3 Using the UART above, transmitting bits at 1 Mbit/s (including start and stop bits), what is the
effective transmission rate (excluding control bits)?

4.4 You recently bought a remote switch for controlling the lights and the TV in your apartment. Being
an engineer, you find it a tad boring controlling it manually, hence you decide to use a microcontroller
(MCU) to do it for you. You attach a WiFi circuit both to the MCU, and the switches. The WiFi
circuits use a serial protocol (UART) for transmitting data. You have the following functions at your
disposal. set_baud(char val) takes a char argument, val. The value of val is calculated as

val =
⌊

fosc

16 · baud rate
− 1

⌋
.

The function set_control(char val) takes an argument, val. Bit 0 determines the number of parity
bits (0 - 1), bit 1 determines the number of stop bits (1 - 2), and bits 2 to 4 determine how many data
bits (5 - 9) are used. 5 data bits are encoded as “000” and so on. Bits 5 - 7 are not used. The last
function is send_char(char c) that sends a single character over WiFi using UART.

To control the lights and the TV, you send an identifier along with a value in the following format:

L1:<on/off>, for light 1
L2:<on/off>, for light 2
TV:<channel>, for the TV

For example, sending

“TV:5”

turns on the TV and changes it to channel 5. Send a zero (0) to turn the TV off.

There are two global variables, hours and minutes that you may use. You want the following func-
tionality:

• At 06:30, turn on light 1 and the TV on channel 4

• At 07:15, turn off the TV, and turn on light 2

• At 07:45, turn off all lights

• At 12:00, turn on light 2

• At 17:30, turn on the TV on channel 6, and both lights

• At 22:00, turn off everything

The UART communicates at a baud rate of 9600 using 1 parity bit, 8 data bits, and 1 stop bit. The
MCU is running at 16 MHz.

24

Chapter 5

Volts to Bits - Analog-to-Digital
Conversion

An analog-to-digital converter (or ADC) is, as the name implies, used to convert a analog signal1 to a digital
value that represents its magnitude. A key property of an ADC is the resolution. The resolution determines
how many quantization levels the magnitude of the analog signal can be encoded in. A digital value from
ADC with the resolution of 10-bits can range from 0 to 1023 (210 − 1). The resolution can also be directly
translated to a voltage. With a 10-bit resolution and a reference voltage2 at 3.3 V each bit equals 3.22
mV (3.3V

210). A conversion is often repeated, at equidistant time steps, to form a discrete-time and discrete-
amplitude digital signal, see Figure 5.1. The rate at which the signal is converted, or sampled at, is referred
to as the sampling rate or sampling frequency.

Am
pl

itu
de

Time

analog
digital

Figure 5.1: An illustration of an analog signal and its digital counterpart.

The reference voltage of the ADC inside the AVR can be set to a variety of things. A common source is
AVcc. This is the power supply to the analog parts of the microcontroller. In this case, it is the same as
Vcc, which is the power supply to the digital part and is equal to 3.3 V. The separation between the two

1A continuous-time and continuous-amplitude signal. An example of an analog signal could be audio signal picked up by a
microphone or the output voltage from a potentiometer.

2The highest allowed voltage that can be converted.

25

power supplies is done to reduce noise on the ADC value. Almost all digital circuits are considered to be
noisy.

See Table 5.1 for the ADC status, control and data registers.

Table 5.1: ADC registers.

Register Description
ADMUX ADC Multiplexer Selection Register
ADCSRA ADC Control and Status Register A
ADCL ADC Data Register Low Byte
ADCH ADC Data Register High Byte
ADCSRB ADC Control and Status Register B
DIDR0 Digital Input Disable Register 0

For more information regarding the associated registers, please refer to page 330-339 in the data sheet.

5.1 ADC Configuration

ADC0
ADC1
ADC2
ADC3
ADC4
ADC5
ADC6
ADC7

ADC data register

MUX[4:0]

ADCH7

ADCH

ADCL

ADCH6 ADCH5 ADCH4 ADCH3 ADCH2 ADCH1 ADCH0

ADCL7 ADCL6 ADCL5 ADCL4 ADCL3 ADCL2 ADCL1 ADCL0

Conversion
logic

Figure 5.2: Pulse width modulation with an AVR timer/counter.

By completing the bullet points below the ADC will be configured.

• Enable the ADC by setting the enable bit in the ADC Control and Status Register A, ADCSRA.

• Furthermore the ADC prescaler should be set to produce a signal (which drives the ADC unit) that
has a frequency between 50kHz - 200KHz. This will ensure that the ADC unit performs the conversion
with good reliability. See Table 25-5 on page 334 and 335

• In the ADC Multiplexer Selection Register, ADMUX, set the MUX-bits to select the desired channel. See
Table 25-4 on page 332. The ADC should be used in the Single Ended Input configuration.

• In the same register, ADMUX, choose the AVcc as the reference voltage. This is done with the REFS1
and REFS0 bits.

26

• With the ADLAR bit in ADMUX register it is possible to choose how the converted ADC value will be
stored in the result register, ADCH and ADCL. For details see page 336-337. By setting this bit to zero,
the most significant bit is placed at index 1 and the next most significant at 0, in the high byte of ADC
result register ADCH. The remaining part is placed in the low byte of the ADC result register. The way
the data is aligned is called right adjusted. See Figure 5.3.

ADC data register
ADCH

ADCL

ADCH9 ADCH8

ADCL7 ADCL6 ADCL5 ADCL4 ADCL3 ADCL2 ADCL1 ADCL0

Figure 5.3: The ADC value is stored in the result registers.

• To start a conversion, set the ADSC bit to one. This bit is found in the ADC Control and Status
Register A, ADCSRA. When this is done, the ADC unit performs a conversion. This will take several
CPU clock cycles. The result should not be read before the conversion has been completed. The ADSC
bit (the same bit that starts a conversion) can be used to check if the conversion has completed. Use
a loop that breaks if the ADSC bit is set to zero. When the loop breaks, it is safe to read the data from
the ADC Data Register, ADC, and another conversion can be started.

Table 5.2: ADC registers.

Register Description
ADMUX ADC Multiplexer Selection Register
ADCSRA ADC Control and Status Register A
ADCL ADC Data Register Low Byte
ADCH ADC Data Register High Byte
ADCSRB ADC Control and Status Register B
DIDR0 Digital Input Disable Register 0

27

5.2 Exercises
Answers to the questions can be found in Appendix 6.5.

5.1 Assume you have signal with 5V amplitude. Assume you AD convert the signal, using a 5V reference
and 10 bit resolution.

(a) How many millivolts (mV) per bit do we get?

(b) What is the largest conversion error (in mV)?

5.2 Given the following signal,
v(t) = 5 sin (15

11πt),

at time t = 2, what is the AD converted value (0 - 1023) with 10 bit resolution?

5.3 The Amazon drone from before seems to be crashing form time to time, destroying expensive piece of
equipment. To mitigate the damages, you installed an accelerometer, ADXL335, along with a parachute
in order to detect when the drone is about to crash to save it from breaking.

The accelerometer has an x, y and a z channel to measure movement in 3D. You have a function
to get the value from an 8-bit ADC (3 V reference), uint8_t read_adc(uint8_t channel), where
the channel value is 0 to 2 for the x to z channels. The accelerometer is powered with 3 V, with
a “zero g bias level” (no acceleration) of 1.5 V on all channels. Then, for every additional g force
(up to 3g), the voltage increases with ±300 mV. That is, for every channel, the voltage ranges from
[1.5 − 0.9, 1.5 + 0.9] = [0.6, 2.4].

(a) How many distinct values can we measure with the ADC?

(b) What voltage does the maximum ADC value correspond to?

(c) What is the voltage range, per channel, from the accelerometer if we remove the constant offset?

(d) Experiments show that a resultant vector with a magnitude of 0.346 (no offset) results in a crash.
Recall the Pythagorean theorem in 3 dimensions,√

x2 + y2 + z2 = d,

implement a program that calls the function release_parachute(), if magnitude exceeds 0.346.
Note that the square-root function is expensive in a microcontroller and should be avoided if
possible.

28

Chapter 6

Answers to Exercise Questions

6.1 Exercise
Click here to fast travel back to Section 1.5, price: 1 bit.

1.1 In a Von Neumann architecture data and code shares the same memory, whereas in a Harvard archi-
tecture they are separated.

1.2 From 2-5 GHz roughly

1.3 The AVR has 1 core. The latest Intel and AMD have around 8 cores, while the AMD Threadripper
has 32 cores.

1.4 16 kiB RAM.

1.5 128 kiB of flash.

1.6 around 8-32 GiB

1.7 Running at 16MHz, it can execute 16 million instructions in 1 second.

1.8 125 ns.

1.9 The least significant byte at the lowest address, see Table 6.1.

Table 6.1: A number stored in little endian.

Addr x x+1 x+2 x+3
Value 0x01 0x67 0xFC 0x12

1.10 On an Intel or AMD, yes, but for AVR, no, due to the Harvard architecture.

1.11 1 byte.

1.12 2 bytes.

1.13 2 bytes.

1.14 0xFFFE

1.15 0xFFFE

1.16 9 bits. One extra for the carry, else overflow.

29

1.17 log2 ((28 − 1) · (28 − 1)) ≈ 16 bits.

1.18 6 variables are created, see Table 6.2.

Table 6.2: Variables with size and location.

Variable Size Memory segment
alpha 2 .data
vec 3 · 1 .data
state 1 .bss
statham 1 (truncated) .data
i 2 stack
looper 2 (not 20) stack

6.2 Exercise 1
Click here to fast travel back to Section ??, price: 1 bit.

2.1 13

2.2 0

2.3 8

2.4 6

2.5 0

2.6 15

2.7 251

2.8 223

2.9 char val = *((char *) 0x1337)

2.10 char val = *((volatile char *) 0x1337)

2.11 *((char *) 0x0666) = 42

2.12 int *addr = &a

2.13 All outputs, DDRG |= 0xFF

2.14 Read and write from/to PORTG, since it is an output.

2.15 char val = (PINH & 0xF0) >> 4

2.16 char val = ((PINH & 0xF0) >> 4) | (PINH & 0xF0)

2.17 See code in Listing 6.1.

30

#define F_CPU 16000000UL
#include <util/delay.h>

uint8_t release;

int main()
{

DDRM |= (1 << 3); // pin 3 as output

while (1) {
if (release) {

// send pulse to keep hatch open
PORTM |= (1 << 3); // pin high
_delay_ms(2);
PORTM &= ~(1 << 3); // pin low
_delay_ms(18);

} else {
// send pulse to keep hatch closed
PORTM |= (1 << 3);
_delay_ms(1);
PORTM &= ~(1 << 3);
_delay_ms(19);

}
}

}

Listing 6.1: Program for controlling the drone hatch.

6.3 Exercise 2
Click here to fast travel back to Section 4.4, price: 1 bit.

3.1 SATA 3.2 has a maximum speed of 16 Gbit/s, while USB 3.1 reaches 10 Gbit/s.

3.2 20% overhead

3.3 800 kbit/s or 100 kB/s

3.4 See code in Listing 6.2.

31

#define F_CPU 16000000UL
#include <util/delay.h>

void send_message(char *);

uint8_t hours;
uint8_t minutes;

int main()
{

set_baud(103);
set_control(0x0D);

while (1) {
if ((hours == 6) && (minutes == 30)) {

send_message("L1:on");
send_message("TV:4");

} else if (hours == 7) {
if (minutes == 15) {

send_message("TV:off");
send_message("L2:on");

} else if (minutes == 45) {
send_message("L1:off");
send_message("L2:off");

}
} else if ((hours == 12) && (minutes == 00)) {

send_message("L2:on");
} else if ((hours == 17) && (minutes == 30)) {

send_message("TV:6");
send_message("L1:on");
// light 2 is already on

} else if ((hours == 22) && (minutes == 0)) {
send_message("TV:off");
send_message("L1:off");
send_message("L2:off");

}
}

}

void send_message(char *msg)
{

// loop until end of string
while (*msg != '\0') {

// send a char and move on to the next
send_char(*msg++);

}
}

Listing 6.2: Program for controlling lights and the TV.

6.4 Exercise 3
Click here to fast travel back to Section 3.4, price: 1 bit.

4.1 (a) T = 80 ms

(b) f = 12.5 Hz

(c) D = 20
80 = 0.25

32

4.2 The function is not continuous, hence we must separate the integral as

uRMS =

√
1

0.08(
∫ 0.02

0
52dt +

∫ 0.08

0.02
02dt) =

√
1

0.08

∫ 0.02

0
25dt

=
√

1
0.08 [25t]0.02

0 =
√

1
0.08 [25 · 0.02 − 25 · 0]

=
√

25 · 0.02
0.08 =

√
6.25 = 2.5V

4.3 In the general case, the RMS value for a square wave is calculated to be

uRMS = Vp

√
D.

4.4 Using the general formula, we get
uRMS = Vp

√
D,

where Vp = 25V and uRMS = 10V. Solve for D, and we get D = (10
25)2 = 0.16. The duty cycle should

be around 16%.

6.5 Exercise 4
Click here to fast travel back to Section 5.2, price: 1 bit.

5.1 (a) 5V
210 ≈ 4.88mV

(b) The largest error is half the value per bit, 2.44 mV.

5.2 The voltage at time t = 2 is
v(2) = 5 sin (15

11π · 2) = 3.778V,

resulting in a value of
3.778

0.00488 ≈ 774.

5.3 Answer

(a) 28 = 256

(b) 3V
256 · 255 = 2.988V

(c) Removing the 1.5 V offset, we get [−0.9, 0.9]

6.6 Exercise 5
Click here to fast travel back to Section ??, price: 1 bit.

6.1 (a) Each clock cycle takes 1 µs. 64 ms is 64000 clock cycles.

(b) We are counting mod 216, hence the timer value is 67000 mod 216 = 1464. We solve this by
another counter increasing every timer overflow.

33

	Introduction to the AVR Microcontroller
	AVR Architecture
	Memory Layout of a Program
	AVR Toolchain
	GCC - GNU Compiler Collection
	avr-libc
	The Atmel-ICE Debugger and atprogram

	Programming Basics
	C Data Types in an AVR

	Exercises

	I/O Ports
	Timers
	PWM with an AVR Timer/Counter
	Fast PWM Mode
	Time measurement using the AVR Timer/Counter 1
	Exercises

	USART - A Serial Communication Protocol
	Data register
	USART control and status
	USART Baud Rate Register UBRR0H and UBRR0L
	Exercises

	Volts to Bits - Analog-to-Digital Conversion
	ADC Configuration
	Exercises

	Answers to Exercise Questions
	Exercise
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

