
Hardware Accelerated Audio Manipulation Using An FPGA

Tom Johansson

Institute of Electronics and Information Technology, Lund University

March 6, 2018

1



Abstract

Hardware acceleration is a commonly used method in time critical or computationally
heavy tasks. In this project, a two channel audio stream of 48 k samples/s with 16 bits/sample
is being manipulated in various ways.

1 Introduction
The primary task of this project is to investigate the performance of an FPGA as an audio ma-
nipulator. However, in order to make the resulting product work well without needing external
equipment, a board containing all the necessary components have been made. The components
added to the board are as follows:

• FPGA (ARTIX-7 35T)

• Audio codec (TLV320AIC3101)

• Microcontroller (Atmega128)

• GPIO pins and buttons attached to the FPGA and microcontroller

• Two channel input and output RCA plugs

The end result should be a board which only needs power and audio input to generate a output
signal modulated in the desired way.

2 Theory

2.1 FPGA
By using lookup tables instead of the multipurpose hardware habituating in microcontrollers and
processors, FPGAs (Fied Programmable Gate Arrays) can often simulate actual hardware logic
quite accurately. By being able to control every register to such detail, FPGAs are generally con-
sidered the second fastest digital construction type, only outranked by ASICs, which are far to
expensive to create for anything other than mass production. Using its superior speed to micro-
controllers, FPGAs are often used to accelerate time critical tasks where the used microcontroller
can’t perform well enough in a procedure known as hardware acceleration.

2.2 Audio codec
An audio codec is primarily used to sample an analog signal to a digital representation or to recreate
a signal from digital data. The audio codec used in this project can produce digital representations
with far better resolution than will be used in the project, both in the frequency and bit/sample
domain. On the downside, however, the only mean of communication it supports to set its setting
is I2C. A communication protocol which relies on its ability to manage multiple devices on the
same two wires. Since only one connection is established in this case, I2C is unnecessarily tedious
to implement.

3 Method

3.1 Preparation
Since the board on which the construction was going to be placed wasn’t finished at the start of
the project, a test board was set up to prepare the project as far as possible. The primary focus
during this phase of the project was to get familiar with the Atmega128 microcontroller and to
program it to handle the I2C programming of the audio encoder.

2



Figure 1: The preparation board.

Figure 2: The lab setup during bud fixing with I2C.

3.2 Programming the microcontroller and audio codec
Programming the audio encoder turned out to be a more time consuming task than expected. It
was quickly decided that I2C is to big of a protocol to implement within the scope of this project
and that a library that implements the protocol should be used in the microcontroller instead. The
first library that was imported was polling based, which means that the library is looking manually
for ack bits in the communication. After a while, however, it was decided that it would be more
elegant to use an interrupt based library instead, and so the old library became replaced. The new
library wasn’t working really as we wanted, so it was edited in some minor ways and some new
helper functions was added to simplifying the sending and reading of data.

An annoying mistake that occurred here was due to miscommunication with Texas Instruments.
They had labeled the device I2C address of the audio to be 0x30 (0011 0000) which was simply
because they helped us concatenate a write bit to the actual address 0x18 (0001 1000). We didn’t
know this so we added an extra write bit and wrote to 0x60 (0110 0000), which obviously never
worked.

3.3 FPGA programming
3.3.1 IP

The FPGA programming was done using the Vivado 2017.2 tool. In it, two IP’s are being used:
The clock IP and the block memory generator IP.

3



Figure 3: The complete final board.

The clock IP generates two clock frequencies: 100MHz for the FPGA itself and 16MHz for the
clock input at the microcontroller and audio encoder.
The memory block generator generates a 32*48 000 bit large memory block. It is designed to
contain a sample of both channels for each memory row and to have a depth of one second of
sampling.

3.3.2 Code

Like most VHDL projects, also this one contains a top module to link the different signals and
submodules together. All the logic to modify the audio lies within one of the submodules. In here,
functionality to receive the audio data from the audio codec through I2S has also been manually
implemented.

4 Results & Discussion
So far, the only functionality that has been implemented is the ability to record audio and repeat it
backwards. The primary reasons for that nothing more has been done yet are the time consuming
problems with getting I2C to work properly and general lack of time due to another ongoing
project. With the hardest parts over, though, I’m optimistic to that a few more functions could
be implemented before presentation.

Finally, disregarding of any end result, I’ve learned a tremendous amount about all the hardware
I’ve used and can sincerely consider myself a better engineer after having done this project.

4


	Introduction
	Theory
	FPGA
	Audio codec

	Method
	Preparation
	Programming the microcontroller and audio codec
	FPGA programming
	IP
	Code


	Results & Discussion

