

PROJECT – TETRIS

Course: EITF40 Digital and Analogue Projects

Author: Wang Yue and Johannes Seidel

Teacher: Bertil Lindvall

1

1. ABSTRACT

This paper describes the developing process of a Tetris Game starting with designing the game, choosing

the right components, assembling the hardware and writing the code. The work is based on the

microcontroller Atmega16, GDM12864H Display, buttons and JTAG interface. The main task of this

project was to generate a working communication between those four components and of course the

program itself. The programming process contained the design of the menu and gaming page, creating

the different Tetris block types, moving and rotating the block types, controlling and manipulating the

speed of the falling blocks, clearing the row and at last increasing the score. How these tasks were

solved is described in the following report.

2

2. Contents

1. Abstract ... 1

2. Contents .. 2

3. Introduction .. 3

4. Requirments .. 4

5. Hardware ... 4

5.1. Microcontroller .. 4

5.2. Dislplay .. 5

5.3. Layout of the Prototype ... 5

6. Software .. 6

6.1. Main program .. 7

6.2. Display ... 8

6.3. Pages ... 9

6.4. Tetris ... 10

6.5. Interrupts ... 12

7. Table of Figures ... 13

8. Appendix ... 14

3

3. INTRODUCTION

Tetris is puzzle video game, which was designed and invented by Alexey Pajitnov. It has been released

on June 6, 1984 and is nowadays available for nearly every video game console and many other devices

like graphing calculators, mobile phones, portable media players and PDAs.1

However the aim of the game is to score as many points as possible by completing a whole row with

square parts of the seven different tetrominoes (Figure 1). “Polyominos are formed by joining unit

squares along their edges. A free polyomino is a polyomino considered up to congruence. That is, two

free polyominos are the same if there is a combination of translations, rotations, and reflections that

turns one into the other. A free tetromino is a free polyomino made from four squares”.2 In the

following report the tetromino is always called a block.

FIGURE 1 TETROMINOES

The blocks are falling down in the game area and can be moved and rotated so that the game player

can place them where he wants them to be. If a row is completed it will be deleted and all the upper

blocks will fall down. The Game is ended if it isn’t possible to place a block without colliding with

another block.

1 http://en.wikipedia.org/wiki/Tetris
2 http://en.wikipedia.org/wiki/Tetromino

4

4. REQUIRMENTS

Before starting with the work some ideas and thoughts had to be developed. The following points show

the main ideas about the hardware and layout in a short way:

 four buttons for control

 one display to show the game

 one microcontroller as the calculating unit + the JTAG interface

 one prototype circuit board

In the second step the most important requirements of the software were summarized:

 Create a start page with “Play”, “Highscore” and “Quit”

 Create a game page that showing level, score, next block and the gaming area

 Program a library for the characters

 Read and write the display

 Create the different types of blocks

 Make the blocks falling down in different speeds

 Rotate and move the blocks without collision with other blocks

 Delete a completed row and move down all of the upper blocks

5. HARDWARE

Before starting with programming, the hardware had to be chosen. In this case some thoughts about the

microcontroller and display were developed. The following part describes the chosen hardware in more

detail.

5.1. MICROCONTROLLER

The requirements on a microcontroller to program a Tetris game are not really high, so nearly every

microcontroller could be used. That’s why an inexpensive and simple microcontroller is totally sufficient.

For that reason an Atmega16, which was also available at the university, was selected.

The Atmega16 is an 8-bit controller, which has 16 kB In-System programmable flash. Its EEPROM is 512

Byte big and as an interface a JTAG can be used. Tow 8-bit timers with separate prescalers and compare

modes are included, that is useful especially for controlling the speed of the falling blocks. The controller

has 32 programmable I/O Lines which can be used to connect peripheral components, for example

display and buttons. 3

3 http://www.eit.lth.se/fileadmin/eit/courses/edi021/datablad/Processors/ATmega16.pdf page 1

http://www.eit.lth.se/fileadmin/eit/courses/edi021/datablad/Processors/ATmega16.pdf

5

5.2. DISLPLAY

The main requirement of the display was a screen that is big enough to show the game page described

in chapter 4. Also it was important that it was available in a short time because of the limited time for

the project.

After comparing a few displays the GDM12864HLCM was

selected. The resolution of this display is about 64x128. It is

divided in two equal 64x64 arrays (Figure 2) which are

controlled each by one chip. In x-direction the display is

divided into 8 pages that consist out of one byte (8 bit). The

communication between a microcontroller and the display is

parallel. Two different types of commands can be used. On the

one hand instruction command is needed to tell the display

whether it should read or write and to send x- and y-address.

With this command the display also can be turned on and off.

On the other hand there are data commands where the data

has to be written/read.

 FIGURE 2 DISPLAY

5.3. LAYOUT OF THE PROTOTYPE

Before connecting all the pins of the display and buttons to the microcontroller, a schematic (Figure 3

Schematic) was made and the schematic is shortly described in this part.

FIGURE 3 SCHEMATIC

6

As you can see in the schematic, the first four pins of port A were used as input for the four buttons. If a

button is pressed a voltage of 5 V between the corresponding pin and ground will be set. Port B and D

are connected to the display while port B handles the data and port D handles the instructions, which

were explained in chapter 5.2.

FIGURE 4 PIN DESCRIPTION OF THE DISPLAY4

Between pin 3, 18 and ground a potentiometer is inserted. When changing the resistance, the contrast

or rather the angle of the liquid crystals is changed. Port C enables the communication with a pc while a

JTAG is used as an interface.

6. SOFTWARE

For programming the microcontroller the language c was selected. As developing environment Atmel

Studio 6 was used. The following chapters explain the software and describe in depth how the code was

programmed.

The program is divided into one main program and three subprograms, as shown in Figure 5:

FIGURE 5 PROGRAM OVERVIEW

4 http://www.eit.lth.se/fileadmin/eit/courses/edi021/datablad/Display/GDM12864H.pdf page 3

http://www.eit.lth.se/fileadmin/eit/courses/edi021/datablad/Display/GDM12864H.pdf

7

6.1. MAIN PROGRAM

The main program is written as short as possible, it primarily contains the initialization and the

continuously performs the while loop of the Tetris game. For the initialization, port B and D are set as

output by writing 0b11111111 to them and port A is set as input by writing 0b00000000 to it (see

chapter 5.3). Also the display is turned on and cleared in the initialization. After that, the interrupts are

enabled (see chapter 6.5) and the Start Page is shown using the function “Show_Start_Page” from the

subprogram “pages.c”. Then the function “Menu” is called from the subprogram “tetris.c”, so that play,

highscore or quit can be selected using the buttons down and right.

In two nested while loops the start column and start row are defined and the functions “Create_Blocks”,

“show_next_block”, “Move_Rotate_Block”, “clear_row” and “check_game_over” are continuously

executed and performed. If the global variable “game_over” is set to 1 by the function

“check_game_over”, the characters “GAME OVER” will be shown on the display.

8

6.2. DISPLAY

The subprogram display.c was created to summarize all functions that relate to the communication

between the display and microcontroller. The following table shows all its including functions and a

short description of them in pseudo code.

LCD_E_Toggle Sets the enable bit of the instruction command from high to low (Pin D5) and

waits for the delay.

LCD_Delay Counts from 0 to 9

LCD_Clear_Display Clears the display by writing zero to every pixel

LCD_Display_On Turns the display on by writing 0b00111111 to port B;

Write D/I and R/W (Pin D3, D4) to 0 and

Selecting the chip by writing 1 to D0 – D1

+ LCD_E_Toggle

LCD_Display_Off Turns the display off by writing 0b00111110 to port B;

Write D/I and R/W (Pin D3, D4) to 0 and

Selecting the chip by writing 1 to D0 – D1

+ LCD_E_Toggle

LCD_Set_X_Address Sets x-address by writing 0b10111000 + page to port B (page is an unsigned 8

bit integer from 0 to 7),

Writes D/I and R/W (Pin D3, D4) to 0

+ LCD_E_Toggle

LCD_Set_Y_Address Sets y-address by writing 0b01000000 + add to port B (add is an unsigned 8 bit

integer from 0 to 63),

Writes D/I and R/W (Pin D3, D4) to 0

+ LCD_E_Toggle

LCD_Read_Byte Reads a byte of the display, needs x and y value (address) by writing

0b11111111 to port B;

selecting chip: if y smaller than 64 write 1 to D1 + LCD_Delay

 else write 1 to D0 + LCD_Delay (chip 2), y=y-64;

LCD_Set_Y_Address(63-y);

LCD_Set_X_Address(x);

Write 0b00000000 to port B,

LCD_Write_Byte Write a byte by telling the address (x, y) and the data to write;

selecting chip: if y smaller than 64 write 1 to D1 + LCD_Delay

 else write 1 to D0 + LCD_Delay (chip 2), y=y-64;

TABLE 1 FUNCTION DESCRIPTION OF DISPLAY .C

9

6.3. PAGES

Pages.c was created to collect all necessary functions for displaying the start and game page. This also

includes functions that produce frames, patterns, characters and blocks using the library called font.h.

 Show_Start_Page Shows the start page including “PLAY”, “HIGH SCORE and “QUIT”;

To display the word “Tetris” an array from font.h is used. To display other

characters, the function Put_Character is used (appendix I).

Show_Game_Page Displays the game page including “Level”, “Score” and a box for showing the

next block, pattern and the gaming area (appendix II).

Show_Frame Shows one of the three frames (appendix I) surrounding “PLAY”, “HIGH

SCORE” or “QUIT”, in order to specify which function is chosen. The

templates of the three frames are saved as data in font.h.

Writes ones to pixels for the frames.

Delete_Frame Deletes one of the three frames (appendix I) outside “PLAY”, “HIGH SCORE” or

“QUIT”. The templates of the three frames are saved as data in font.h.

Writes zeros to pixels for the frames.

Put_Character Displays different characters, one at a time. The data needed for displaying

the characters are saved in font.h.

The characters have a size of 8x7 (pixel).

Reverse_Byte Reverses one selected byte, this is necessary because of the direction the

display works.

Create_Blocks Shows all 7 types of different blocks in the game area. The data needed for

displaying the blocks are saved in font.h.

The position of the created block is recorded into global array “falling_units”,

which keeps track of the falling block.

Create_Blocks_Next Similar to Create_Blocks, but it shows all types of blocks in the box which

displays the next block.

Display_Unit Shows one unit on the display. The whole display is divided in to 16x32 units.

Each unit is 4x4 pixels. Each block consists of 4 units, so the function is useful

when creating blocks (refer to Appendix iii)

One page is divided into two units in x direction. When displaying a unit on

one side (left or right) of a page, keeps the data on the other side of the page

unchanged.

Display_Score Shows the score(integer) while

hundred = score/100;

ten = (score – hundred*100)/10;

one = score%10;

10

hundred is written into page 3, ten into page 4 and one into page 5.

Display_Level Does the same as “Display_Score” except that the input number “level” is

displayed at the indicated place for level.

Display_Highscore Does the same like “Display_Score” except that the high score is displayed at

the middle of the display.

TABLE 2 FUNCTION DESCRIPTION OF PAGES.C

6.4. TETRIS

Tetris.c contains all the important functions of the game like for example moving and rotating the blocks.

The following table describes the functions in more detail.

Menu This function is needed to control which frame at the start page should be

displayed. As a default frame0 surrounding “PLAY” is displayed. If the button

right is pressed it will clear the display and show the game page.

Every time button down is pressed the previous frame will be set zero and the

next frame will be set one. If right button is pressed while frame1 is one, the

display is cleared and the high score is shown. If frame2 is one and the right

button is pressed the display will be shut down.

Move_Rotate_Blo

ck

With this function blocks can be moved or rotated. For example if the button up

is pressed and the function collision_rotate returns a zero, the current block will

be rotated by 90 degree counter-clockwise. The rotation is realized by rotating

the matrix for displaying the block. The matrix can be rotated as shown in the

following table:

row column new row new column

0 0 3 0

0 1 2 0

0 2 1 0

0 3 0 0

1 0 3 1

1 1 2 1

1 2 1 1

1 3 0 1

2 0 3 2

2 1 2 2

2 2 1 2

2 3 0 2

3 0 3 3

3 1 2 3

3 2 1 3

3 3 0 3

 TABLE 3 MATRIX TRANSFORMATION

11

If the right button is pressed and the function collision_right returns a zero the

current block will be deleted and all units of the current block will be moved to

right neighbor unit. The opposite applies when the left button is pressed.

random This function was copied and modified from

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&p=5119

23. It creates a random number between 0 and 7 which is assigned to the

characters A – G using the ascii-code.

show_next_block Shows a random next block in the box above the game area. The random block

type is determined by random(), and then the block type is assigned to the

globle variable next_block_type.

collision_left Collision_left checks if it is possible to move block to the left. If there is a

displayed unit left to the falling units it will return a one otherwise it will return

a zero.

collision_right Is nearly the same as collision_left, except that it checks the right side of the

block

collision_down Is also analogical to collision_right and collision_left

collision_rotate Gets the position of the rotated block without showing the block. Checks if the

rotated blocked collides with other displayed units. If there is a collision return

1, else return 0.

block_to_gaming_

array

This function records the position of a block when it can’t fall down anymore.

The position is written into gaming_array, which records all stable displayed

units in the game area.

clear_row If full_row returns a 1 the completed row will be deleted, the gaming array will

move one unit down and the score will increase by one and be displayed.

After score reaches a defined number (Table 4) the level will be set higher.

 TABLE 4 SCORE - LEVEL

full_row If a complete row is made this function will return a one.

write_highscore Write the high score to the EEPROM of microcontroller as described in

http://www.eit.lth.se/fileadmin/eit/courses/edi021/datablad/Processors/ATme

ga16.pdf page 19.

read_highscore Read the high score from the EEPROM of microcontroller as described in

http://www.eit.lth.se/fileadmin/eit/courses/edi021/datablad/Processors/ATme

ga16.pdf page 20.

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&p=511923
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&p=511923
http://www.eit.lth.se/fileadmin/eit/courses/edi021/datablad/Processors/ATmega16.pdf
http://www.eit.lth.se/fileadmin/eit/courses/edi021/datablad/Processors/ATmega16.pdf
http://www.eit.lth.se/fileadmin/eit/courses/edi021/datablad/Processors/ATmega16.pdf
http://www.eit.lth.se/fileadmin/eit/courses/edi021/datablad/Processors/ATmega16.pdf

12

check_game_over Writes one to the global variable

game_over when a one is written to the

first row of the gaming_array. This will

cause that “GAME OVER” is displayed

(Figure 6) on the screen.

Figure 6 Game over

FIGURE 7 FUNCTION DESCRIPTION OF TETRIS.C

6.5. INTERRUPTS

The interrupts are needed to manipulate the speed of the falling down blocks. Therefore the interrupt

vector TIMER1_COMPA_vect was used. It generated an interrupt when a number, which was defined

before, is reached. The system frequency was set to 2 MHz so a prescaler was needed. That’s why CS10

and CS12 were set so the clock source was divided by 1024. 5

The time to count for one was calculated as it is shown in equation 1. So the prescaler was divided by

the frequency. After this the falling down time for each level was defined (Table 5). Then the count

needed for different falling time is calculated as shown in equation 2.

𝑡1 =

𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟

𝑓

(1)

count to =

𝑡2

𝑡1

(2)

Time2 count to score

0,80 1563 10

0,72 1406 20

0,63 1230 30

0,55 1074 50

0,47 918 70

0,38 742 100

0,30 586 140

0,22 430 190

0,13 254 250

0,10 195 320

TABLE 5 LEVEL DEFINITION

5 http://www.engblaze.com/microcontroller-tutorial-avr-and-arduino-timer-interrupts/

13

7. TABLE OF FIGURES

Figure 1 Tetrominoes .. 3

Figure 2 Display ... 5

Figure 3 Schematic .. 5

Figure 4 Pin description of the display ... 6

Figure 5 Program overview .. 6

Figure 6 Game over ... 12

Figure 7 Function description of tetris.c ... 12

14

8. APPENDIX

APPENDIX I - START PAGE

15

APPENDIX II - GAME PAGE

16

APPENDIX III UNITS FOR DRAWING UP THE BLOCKS

	1. Abstract
	3. Introduction
	4. Requirments
	5. Hardware
	5.1. Microcontroller
	5.2. Dislplay
	5.3. Layout of the Prototype

	6. Software
	6.1. Main program
	6.2. Display
	6.3. Pages
	6.4. Tetris
	6.5. Interrupts

	7. Table of Figures
	8. Appendix

