Reversi

Digital and analog projects - EITF40

Project Report

Group 2

Fredrik Adlercreutz - et08fa4@student.lth.se
Patrick Forsyth - dt08pf4@student.lth.se
Carl-Johan Heinze - ada10che®@student.lu.se

2014-03-04

Abstract

We signed up for the course EITF40, Digital and Analogue projects, with the intention of putting
previous knowledge to use to develop a product with a combination of both hardware and
software. That was what was compelling about this course, to see our project grow from a few
components into something we could program according to our wishes.

The actual thing we chose to program is Reversi, which is a strategy game played on an 8x8
uncheckered board.

We encountered some problems along the way, mostly related to understanding the
components, but in the end we managed to put together a working product.

Table of contents

1

N

[l

o) I

@ >

Introduction

11 The game

1.2 Initial requirements specifications
Hardware

2.1 Microcontroller - Atmel ATMEGA16

2.2 Debugger/Programmer - JTAG ICE mkll
2.3 LCD - GDM12864C

2.4 Buttons and LEDs

Software

Execution

41 Planning

4.3 Software development

Results

Discussion

6.1 Issues

6.2 Further development

6.3 Comments and experiences
Circuit diagram

Source code

1 Introduction

1.1 The game

Reversi is a strategy game played on an 8x8 uncheckered board. Two players take turns
placing markers (called disks) with their assigned color facing upwards on the board. One player
uses the light side and the other player uses the dark side of the disks. A disk can only be
placed where it would create a straight line between two disks of the players own color, with all
of the bounded squares containing disks of the other players color. The bounded disks are then
turned over to the players color which finishes the current players turn.

The game is over once the last playable square is filled. The winner is the player with most disks
of their assigned color.

If a player is unable to place a disk, the turn passes back to the other player. If a position is
reached where neither player can legally place a disk, the game is over and the player with the
most disks in their own color wins.

1.2 Initial requirements specifications
In the first week of the course, we wrote a basic requirements specification, outlining what we
wanted to be achieve during the course.

This is what we came up with:

Grupp 2 - Reversi

Requirements Specification

Functionality requirements
1. Multiplayer game of Reversi
Display board
Display current score
Display current selection (cursor)
Display current player
Move cursor by using 4 buttons for direction and 1 for selection
Sound feedback
Light feedback

© N O WDN

In case of time (Optional requirements)
1. Store high-score
2. Display high-score list
3. Chess-clock functionality (Game option)

Component list
ATMega16
LCD

5 buttons
Speaker
Lights

As it would later turn out, this list was a bit too ambitious. This is discussed further in the
Discussion section of the report.

2 Hardware

2.1 Microcontroller - Atmel ATMEGA16

The ATMEGA16 is an 16 MHz 8-bit, 40 pin microcontroller split between 4 ports, A through D. In
our configuration we have configured port A for controlling the LCD-display, port B for sending
data to the display, port C controls the LEDs and port D includes the buttons as well as the
interrupt handling.

2.2 Debugger/Programmer - JTAG ICE mkli

The JTAG interface provides an easy way to communicate with and debug the program running
on the ATMega circuit. Ports 23 - 27 had been reserved for JTAG communication. We used the
JTAG controller via USB throughout the development process in order to write our program onto
the microcontroller. We also used it for debugging throughout development. With the JTAG
connected to a computer with AVR Studio 4, we could set breakpoints or simply step through
the executing code line by line or method by method.

2.3 LCD-GDM12864C

We decided to use GDM1286C for displaying the game. It's a 128x64 LCD, which fit us nicely
since we wanted the game to have an 8x8 grid, which meant we could use 8x8 pixels for each
square. The display is divided into two 64x64 halves, which is selected by setting a certain bit.
So to avoid any possible complications, and to reduce complexity, we decided to use the right
screen half for displaying the grid and the left screen half for any additional information. For
board layout purposes the display was also placed invertedly (flipped on both the vertical and
horizontal axis).

The screens internal logic is constructed in a way so that each half of the screen is divided into
eight parts along the x-axis meaning that when you write to the screen you will have to write to 8
pixels of the same group and light only the ones of these you want. This is controlled through the
data.

2.4 Buttons and LEDs

We used 5 buttons for controlling the cursor and placing a disk. These were constructed as
active low electrical switches connected to an AND gate as well as Port C on the
microcontroller. The AND gate is in turn connected to an interrupt pin on the microcontroller. A
press on the button would trigger an interrupt on the interrupt pin and the corresponding code on
the microcontroller would then register which of the buttons had been pressed.

We also put two LEDs on our board used to indicate which players turn it is and to blink in
different patterns to alert when a move is not possible and ultimately to show who won the game.
The green LED is used for player one (dark disks) and the red LED is used for player two (light
disks).

3 Software

We wrote our code in C using AVR Studio 4, which is an IDE designed specifically for use with
AVR microcontrollers. In addition to our own code we used the standard avr-lib in order to use
AVR specific Ports and functions. The circuit diagram was created with PowerLogic.

The full source code is available in appendix A.

4 Execution

4.1 Planning

The first step of this project course was to decide what project to do and to write a requirement
specification. During the first course week there was also a laboration (general introduction) to
the ATMEGA16 microcontroller that we all attended. After some deliberation within the group, we
decided that a Reversi game would be both fun to do, as well as it allowed us to use different
types of interfaces, such as buttons, a display, lights, and sound.

4.2 Construction

We started out by designing a rough circuit diagram, using PowerLogic, which had to be updated
several times during the development process due to finding new problems or intricacies that
required either a new solution or a different approach when we started to connect the hardware
on the board. After connecting the ATMEGA16 to the LCD, LEDs and buttons with their required
logic we had to reiterate and reroute some of the wires, partly due to mistakes and partly due to
layout optimisations. After most mistakes and rerouting of wires had been performed we applied
the voltage and started out on the next part of the project: the software.

4.3 Software development

The first and probably largest trouble we had was to get the LCD to show anything at all, and
only after extensive reading and eventual comprehension of the LCDs datasheet, along with a lot
of trial and error, we managed to write to the top left corner of the screen and from the
knowledge we acquired from this we were able to paint the 8x8 grid. This 8x8 grid is represented
by a matrix, aided by a converter that converts coordinates from the matrix to actual pixel
positions. Then these coordinates are marked if a player has a disk in that specific location. With
every new disk that is placed every square around it is checked for an opponents disk and if
that is found we search in that direction for a second disk of the active player and if that is found
we flip the opponents disks between these.

5 Results

The result we have achieved is a fully operational Reversi game board for two players. The
LEDs give visual feedback to show which players turn it is, and to show when a player does not
have any valid moves, and ultimately blink to show who won the game. We also display the
current score and indicate whose turn it is on the LCD.

AVR 8~Bit-RISC W

/ -« / \
g :
i i
| ; R %
(S % A RN e,) 3
S i TSNP 5 e h \

Figure 1. Our board, near the end of the course

6 Discussion

6.1 Issues

While we were not effective enough to implement all the features discussed in our requirements
specification on time, we are still fairly pleased that we were able to get the game working in the
end. We underestimated the difficulties of getting the hardware working correctly and did not
spend enough time working during the first half of the course.

The main problem was related to fully understanding how to control the LCD. As we did not have
any experience of how an LCD screen Never having used a display in this sense, the provided
datasheet did not elaborate very far on how the write timing works, except for a diagram. After
reading a multitude of other datasheets of similar displays, we started to get a larger
comprehension of how it worked. After further experimentation we finally managed to write to the
screen. This process was the most time-consuming element of the project.

6.2 Further development

The main feature we did not implement was audio feedback. We had planned to use a speaker
coupled with a digital-to-analog converter to play sounds for instance when a disk was placed or
a player was forced to forfeit a turn due to having no legal moves.

We spent the last few days trying to get the speaker working, but in the end, we ran out of time
and at the moment of writing this report, the audio features are not implemented. We estimate
that we could get everything in place and working correctly if we spend a few more days
working on it.

The optional features what we did not implement were related to high-score functionality and a
chess-clock to limit the time a player had to place a disk. This would probably also result in us
having to add a menu screen. From this menu screen the chess clock feature could be activated
and the high-score could be displayed. In order for us to be able to store the high-score between
sessions we would also have to look into how to writing and reading from the EEPROM.

6.3 Comments and experiences

This course has been enjoyable and useful. We all feel that we have gained valuable
experience. Few other courses focus on both hardware and software simultaneously, and it
provides extra satisfaction to see the program you wrote being executed on hardware you
yourself put together. We have gotten useful reminders of bitwise operations, soldering and
circuit design. Some of us had not done much coding in C before, so writing the program also
provided useful experience.

A Circuit diagram

+5V

Lono GND

B Source code

U3 piSPLAYBATRONBT128064 pE
1
7 B
5 oSt
s g
€52
pst (2 3
08I R/W
104
2 3 i
3 VEE
H
I NC2Z
m]oee
ut
RESET
XTALZ AREF
XTALL PLO(SCL)
(xck/TO)PBO PCI(SDA)
AND (TP pra(ree)
UTLGC (WF2/ANo)Pa2 PCI(THS)
1 {oca/aNiPa3 Pee{roo)
2 Ca(T0)
—3 (uos)P8s PCB(TOSCY)
—% (MISC)PBS PC7(TS62)
5 Blisckypar rAz(ADeY) 0z A
—e{(Rx0)Poe EAE(ADEE) Ré)
—1 drrxp)ent PAS{ABCE)
(WTO)P02 PAA{ADCA) 2
(NTPDI PAJ(ADC3) LED
(ociepos Paz{aocz) e
J5 (0CIAJPDS PAYADCY) AR R7
i PAD(ADCE) A K AN
(oc2)p07 S— P
MJ AVRMEGAIS LED
o4
43
0 RS
10K
Re
i "\
10K
3
. AAA
10K
Rz <4
10K

#include
#include
#include
#include
#include

<avr/io.h>
<stdint.h>
<util/delay.h>

<avr/interrupt.h>

<string.h>

#include <inttypes.h>
#include <avr/io.h>
#include <avr/pgmspace.h>

#define Y_MIN ox40
#tdefine Y_MAX Ox3F
#tdefine _NOP() asm volatile("nop\n");
#tdefine X_MIN 0xB8
#define X_MAX OxBF

unsigned short int xPos;
unsigned short int yPos;
unsigned int allMarkers[8][8];
unsigned int aPos;

unsigned int bPos;

unsigned short int drawX = ©xBS8;
unsigned short int drawY = 0x42;
unsigned short int player;
unsigned short int skipped;
unsigned short int scorel;
unsigned short int score2;

void wait()

{
int i = 9;
while(i < 32)
{
i++;
}
}
void toggle()
{
PORTA = PORTA | @x20; //Or med "Toggle hég" (1 0 0 0 0 @ @ @ B) => E hog
PORTA = PORTA & OxDF; //And med inverterad "Toggle hég" (0 111111 11)=>E 1lag //7F
PORTA = PORTA | @x20; //Or med "Toggle hdg" (Se férsta steget) => E hog
}
void displayOn()
{
PORTB = Ox3F;
PORTA = 0x3C; //9C
toggle();
}
void displayOff()
{
PORTB = Ox3E;
PORTA = 0x3C; //9C
toggle();
}

void convertGridToCord(int a,int b) {// konverterar en koordinat till pixelkoordinater
drawX = OxB8+(0x01*a);
drawY = 0x42+(0x08*b);

void convertCordToGrid(int x, int y){
aPos = x - 0OxBS8;
bPos = (y - 0x42)/0x08;

}
void clearDisplay()
{
for(int k = OxB8; k <= (OxB8 + 0x07); k++)
{
PORTA = 0x3C; //Markera bada skarmhalvorna //var 9C
PORTB = k; //Markera den aktuella byten
wait();

10

toggle();

PORTB = 0x40; //Markera langst till hoger
wait();

toggle();

PORTA = OxBC; //Markera for utskrift //var DC
PORTB = ©x00; //Rensa markerade pixlar
for(int i = ©; i < 64; i++)

{
// wait();
toggle();
}
}
}
void clearScoreDisplay()
{
for(int k = 0; k <= 16; k++)
{
PORTA = 0x38; //Markera bada skarmhalvorna //var 9C
PORTB = k; //Markera den aktuella byten
wait();
toggle();
PORTB = 0x40; //Markera langst till hoger
wait();
toggle();
PORTA = 0xB8; //Markera for utskrift //var DC
PORTB = 0x00; //Rensa markerade pixlar
for(int i = ©; i < 64; i++)
{
// wait();
toggle();
}
}
}

void write(int x, int y, int data, int displayScreen)

{
if(displayScreen == 1)

PORTA = 0x34; //34

} else if (displayScreen == 2) {
PORTA = 0x38; //98

}

//wait();
//toggle();
PORTB = y; //y
wait();
toggle();

PORTB = x ; //x
wait();
toggle();

if(displayScreen == 1)
PORTA = @OxB4; //D4

} else if (displayScreen == 2){
PORTA = 0xB8; //D8

}

PORTB = data;
// wait();
// toggle();

PORTA = @x30; //90

11

wait();
toggle();
}

void drawCursor() {
int x=xPos;
int y=yPos;
for(int i=0x00;i<=0x06;i+=0x01){
if(i == @xe0 || i == oxe6)
write(x,y-0x01+i,0xFF,1);

}
void drawBlackMarker(int x, int y) {

for (int i = @; i < 5; i++) {
write(x,y+i,0xBE,1);
}
}

void drawWhiteMarker(int x, int y) {

for(int i=0x00;i<=0x04;i+=0x01){
//write(x,y,0xBE,1); Svart bricka
if(i == 0x00 || i == oxe4){
write(x,y+i,0xBE,1);
} else {
write(x,y+i,0xA2,1);
}

void drawChar(int x, int y, int num) {
switch(num) {

case 0:
write(x,y,0x00, 2);
write(x,y,0x7C, 2);
write(x,y,0x8A, 2);
write(x,y,0x92, 2);
write(x,y,0xA2, 2);
write(x,y,0x7C, 2);
break;

case 1:
write(x,y,0x00, 2);
write(x,y,0x00, 2);
write(x,y,0OxFE, 2);
write(x,y,0x40, 2);
write(x,y,0x20, 2);
write(x,y,0x00, 2);
break;

case 2:
write(x,y,0x00, 2);
write(x,y,0x62, 2);
write(x,y,0x92, 2);
write(x,y,0x8A, 2);
write(x,y,0x86, 2);
write(x,y,0x42, 2);
break;

case 3:
write(x,y,0x00, 2);
write(x,y,0x6C, 2);
write(x,y,0x92, 2);

(Y)

12

case 4:

case 5:

case 6:

case 7:

case 8:

case 9:

case 10:

case 11:

write(x,y,0x92,
write(x,y,0x82,
write(x,y,0x44,
break;

write(x,y,0x00,
write(x,y,0x08,
write(x,y,OxFE,
write(x,y,0x48,
write(x,y,0x28,
write(x,y,0x18,
break;

write(x,y,0x00,
write(x,y,0x9C,
write(x,y,0xA2,
write(x,y,0xA2,
write(x,y,0xA2,
write(x,y,0xE4,
break;

write(x,y,0x00,
write(x,y,0x4C,
write(x,y,0x92,
write(x,y,0x92,
write(x,y,0x92,
write(x,y,0x7C,
break;

write(x,y,0x00,
write(x,y,0xE0,
write(x,y,0x90,
write(x,y,0Ox8E,
write(x,y,0x80,
write(x,y,0x80,
break;

write(x,y,0x00,
write(x,y,0x6C,
write(x,y,0x92,
write(x,y,0x92,
write(x,y,0x92,
write(x,y,0x6C,
break;

write(x,y,0x00,
write(x,y,0x7C,
write(x,y,0x92,
write(x,y,0x92,
write(x,y,0x92,
write(x,y,0x64,
break;

//16 = B
write(x,y,0x00,
write(x,y,0x6C,
write(x,y,0x92,
write(x,y,0x92,
write(x,y,0x92,
write(x,y,OxFE,
break;

//11 = W
write(x,y,0x00,
write(x,y,OxFE,
write(x,y,0x04,

2);
2);
2);

2);
2);
2);
2);
2);
2);

2);
2);
2);
2);
2);
2);

2);
2);
2);
2);
2);
2);

2);
2);
2);
2);
2);
2);

2);
2);
2);
2);
2);
2);

2);
2);
2);
2);
2);
2);

2);
2);
2);
2);
2);
2);

2);
2);
2);

13

write(x,y,0x18, 2);
write(x,y,0x04, 2);
write(x,y,0xFE, 2);
break;

case 12: //12 = Colon-sign
write(x,y,0x00, 2);
write(x,y,0x00, 2);
write(x,y,0x00, 2);
write(x,y,0x6C, 2); //6C
write(x,y,0x6C, 2); //6C
write(x,y,0x00, 2);
break;

case 13: //13 = Space

write(x,y,0x00, 2);
write(x,y,0x00, 2);
write(x,y,0x00, 2);
write(x,y,0x00, 2);
write(x,y,0x00, 2);
write(x,y,0x00, 2);
break;

case 14: //14 = | marker (Active player)
write(x,y,0x00, 2);
write(x,y,0x7C, 2);
break;

case 15: //15 = small-space (Not active player)
write(x,y,0x00, 2);
write(x,y,0x00, 2);
break;

/*
//Conversion chart to flip char-segments
3E -> 7C
42 -> 42
61 -> 86
51 -> 8A
49 -> 92
46 -> 62
00 -> 00
04 -> 20
02 -> 40
7F -> FE
18 -> 18
14 -> 28
12 -> 48
36 -> 6C
41 -> 82
22 -> 44
39 -> 9C
45 -> A2
27 -> E4
32 -> 4C
07 -> EO
09 -> 90
o1 -> 80
71 -> 8E
26 -> 64
10 -> 80
*/

14

}

void drawScore() {

clearScoreDisplay();
int bl = scorel/10;

int b2 = scorel%10;
int wl = score2/10;
int w2 = score2%10;

//PLAYER ONE TEXT/////////11111111111111]

if (player==1) {

drawChar(16,0,14); //|

} else {

drawChar(16,0,15); //small-space
}

drawChar(16,0,b2);
if (b1 >=1) {
drawChar(16,0,b1);
} else {
drawChar(16,0,13); //space
}

drawChar(16,0,12); //colon-sign
drawChar(16,0,10); //B

if (player==1) {
drawChar(16,0,14); //|
} else {
drawChar(16,0,15); //small-space

}
II171100777777007777777177177777111111777
drawChar(16,0,13); //Space

//PLAYER TWO TEXT/////////11111111111111]

if (player==2) {
drawChar(16,0,14); //active-marker
} else {
drawChar(16,0,15); //small-space

drawChar(16,0,w2);
if (wl >=1) {
drawChar(16,0,wl);
} else {
drawChar(16,0,13); //space
¥
drawChar(16,0,12); //colon-sign
drawChar(16,0,11); //W
if (player==2) {
drawChar(16,0,14); //active-marker
} else {
drawChar(16,-7,15); //small-space

¥
0TI 000707177700771111117771111117

void drawAllMarkers() {

15

scorel = O;
score2 = 0;
for (int k = 0; k <= 7; k++) {
for (int 1 = 0; 1 <= 7; 1++) {

if (allMarkers[k][1] == 1) {
convertGridToCord(k,1);

scorel++;
drawBlackMarker(drawX, drawY);
// converter(k,1);
// for (int i = 0; i < 5; i++) {
//write(k,1+i,0xBE,1);
// write(drawX,drawY-i,®xBE,1);
//}

else if (allMarkers[k][1] == 2) {
convertGridToCord(k,1);

score2++;
drawWhiteMarker(drawX,drawY);
// for (int i = @; i< 5; i++) {
// if (i==0]] 1i==4)({
// write(k,1-1, OxFF, 1);
// } else {
// write(k,1-1, oxC1, 1);
// }
// }
// }
¥
}
}

void redraw()

{
//clearDisplay();
int i;
for (i=X_MIN; i <= X_MAX ; i+=0x01) {
int y = Y_MIN;
int j;
for (j = 0; j<64; j++){
if((J % 8) == 0){
write(i, y, OxFF, 1);
} else {
write(i, y, ox80, 1);
}
y += 0x01;
}
}
drawAllMarkers();
drawCursor(xPos,yPos);
// PORTC=0x40;
}

void switchPlayer(){
if(player == 1){
player = 2;
// PORTC =0x80;
PORTC=(0xCO ~ PORTC);//SPEAKERTEST
} else {

16

player = 1;
//PORTC =0x40;
PORTC=(0xC0@ ~ PORTC);//SPEAKERTEST

}

int movePossible() {
int opponent = (player == 1)? 2 : 1;
for (int a =7 ; a++) {
for (int b =0 ; b <=7 ; b++) {
if (allMarkers[a][b] == @) {
int deltaA;
int deltaB;
for (deltaA = -1; deltaA <= 1; deltaA++) {
for(deltaB = -1; deltaB <= 1; deltaB++){

U}
H ® 1l
-
@
A
|

if (a+deltaA > 7 || at+deltaA < @ || b+deltaB > 7 ||
b+deltaB < @ || (deltaA == @ && deltaB == 0)){
continue;

}
if (allMarkers[a+deltaA][b+deltaB] == opponent){

int nextA = a+deltaA;
int nextB = b+deltaB;

for(;;){

nextA += deltaA;
nextB += deltaB;

if(nextA > 7 || nextA < @ || nextB >
7 || nextB < 0){

break;
// Out-of-bounds, not valid

}

if(allMarkers[nextA][nextB] == 0){
break;
// Empty, not valid

}

if(allMarkers[nextA][nextB] ==

player){

return 1;
// Valid move found

}

break;

}
}
}
}
}
}
}
return 0;
}

void placeBrick() { //kollar om draget &r giltligt och placerar da ut bricka
int movesPerformed = 9;
int opponent = (player == 1)? 2 : 1;
int a = aPos;
int b = bPos;
if (allMarkers[a][b] == @) {

17

int deltaA;

int deltaB;

for (deltaA = -1; deltaA <= 1; deltaA++) {
for(deltaB = -1; deltaB <= 1; deltaB++){

if (a+deltaA > 7 || a+deltaA < @ || b+deltaB > 7 || b+deltaB < @ ||
(deltaA == 0 && deltaB == 0)){
continue;

if (allMarkers[a+deltaA][b+deltaB] == opponent){

int nextA = a+deltaA;
int nextB = b+deltaB;
for(5;){

nextA += deltaA;
nextB += deltaB;

if(nextA > 7 || nextA < @ || nextB > 7 || nextB < @){
break;
// Out-of-bounds, not valid

}

if(allMarkers[nextA][nextB] == 0){
break;
// Empty, not valid

}

if(allMarkers[nextA][nextB] == player){

while(allMarkers[nextA-=deltaA][nextB-=deltaB] == opponent){
allMarkers[nextA][nextB] = player;

movesPerformed++;
}
break;
// Valid move found, traverses back and flips
the disks
}
}
}
}
}
}
if(movesPerformed != 0){
allMarkers[aPos][bPos] = player;
skipped = 0;
switchPlayer();
¥
drawAllMarkers();
}

void removeCursor() {

int x = xPos;

int y = yPos;

for(int i = 0x00; i <= Ox06; i+= Ox01l) {
if (i == 0x00 || i == @exe6) {

18

write(x,y-0x01+i,0x80,1);

}

}

}

void newGame() {
xPos = OxBC;
yPos = Ox5A;
aPos = 4;
bPos = 3;

memset(allMarkers,0, sizeof allMarkers);//resets allMarkers to zeros
// Wait a little while the display starts up
wait();

// SREG = OXFF;
//PORTC=0x40; //LED GREEN
PORTC=(@x40 | PORTC);//SPEAKERTEST

displayOn();
clearDisplay();
allMarkers[3][4] =
allMarkers[4][3] =
allMarkers[3][3] =
allMarkers[4][4] =
player = 1;
skipped = ©0;

/* allMarkers[5][4] =
allMarkers[5][3] =
allMarkers[6][3] =
allMarkers[6][4] =
allMarkers[2][3] =
allMarkers[2][3] =
allMarkers[2][4] =

NN R BR
. . e e we e

[

“.

R R R RRRR
<.

[

*/
//drawAllMarkers();
redraw();

}

void checkWinner() {
if (scorel > score2) {
for(int i =0 ; i < 5 ; i++) {
PORTC=0x00;
_delay_ms(300);
PORTC=0x40;
_delay_ms(300);
¥
} else if (score2 > scorel) {
for(int i =0 ; i <5 ; i++) {
PORTC=0x00;
_delay_ms(300);
PORTC=0x80;
_delay_ms(300);
}
} else {
for(int i =0 ; i < 5 ; i++) {
PORTC=0x00;
_delay_ms(300);
PORTC=0xCO;
_delay_ms(300);

}

//void cursor(left,right,up,down) {}
ISR(INT@ vect) {
unsigned short int input = PIND;

_delay_ms(150);
_NOP();
switch(input) {//enter FUNKAR
case OxBB:
//PORTC = (@x01 | PORTC);
placeBrick();
drawScore();
if(!movePossible()) { //kolla nu movePossible for ndsta spelare
//skipped++;
//if (skipped == 2) {
// PORTC=0xCO;
// _delay_ms(3000);
// checkWinner();
// newGame();
// } else {
PORTC=0xC0O;
_delay_ms(1000);
switchPlayer();
if(!movePossible()){
PORTC=0xC0;
_delay_ms(3000);
checkWinner();
newGame();

}

drawScore();

}

break;

case OxF3://right Funkar
if (yPos <= 0x42) {

break;

¥

else
removeCursor();
yPos-= 0x08;
bPos--;
drawCursor();
//redraw();
//cursor(1,0,0,0);

break;

case OxDB://left FUNKAR
if (yPos >= 0x7A) {

break;
}
else
removeCursor();
yPos+=0x08;
bPos++;
drawCursor();
//redraw();
//cursor(0,0,0,1):
break;

20

case OxEB://down FUNKAR
if (xPos <= @xB8) {

break;
}
else
removeCursor();
XxPos -= 0x01;
aPos--;
// redraw();
drawCursor();
//cursor(0,1,0,0);
break;

case Ox7B://up
if (xPos >= OxBF) {

break;
¥
else
removeCursor();
xPos += 0x01;
aPos++;
// redraw();
drawCursor();
//cursor(0,0,1,0);
break;

int main(void) {

//INIT

DDRA = OxFF;
DDRB = OXxFF;
DDRD = 0x00;
DDRC=0xFF;
GICR = 0x40;

MCUCR = 0x02;
newGame();
drawScore();

sei();
while(1);

21

