
EITF40
IR-Ball

Erik Hogeman - ada09eho@student.lu.se
Fredrik Johnsson - dt08fj8@student.lth.se

March 5, 2013

Contents
1 Abstract 2

2 Introduction 3

3 Requirements 4

4 Components 4

5 Schematics and Communication 4

6 Code architecture 5
6.1 Main loop . 6
6.2 The Ball . 6
6.3 The Paddle and enemies . 6
6.4 The display handler . 6

7 Result 6

1

1 Abstract
The goal of this project was to implement a version of the classic game DX-
Ball, controlled with an IR remote control. The game should consist of a ball,
a paddle and some square, floating blocks that should disappear when the ball
hits them. The hardware used is an ATmega16 microprocessor, an IR decoder,
an IR detector and an LCD display using some LCD-controllers. A switch and
a couple of resistors were also used, and of course a remote control for actually
playing the game.

When the game starts, it immediately starts polling for new commands
from the remote while also updating the ball position and writing to the dis-
play. Whenever a command is found, the paddle is also updated. The end result
turned out to work almost according to the initial requirements, with the ex-
ception of the overall flow of the game which we would have wanted to be a bit
faster. After doing all kinds of optimizations, we succeeded to make the game
playable, but there is still some noticeable delay while playing, and a few minor
bugs that show up from time to time. The overall result has to be considered a
sucess though.

2

2 Introduction
The project described in this report was done as a part of the course EITF40,
digital and analogue projects. The goal was to build and program a small
hardware construction of our own choice. We chose to build a version of the
classic game DX Ball controlled by IR light using a remote control.

This report will describe the initial requierements and how the actual result
turned out in the end. The different parts used and how they are communicating
with each other, and a general description of the code architecture will also be
presented.

3

3 Requirements
We decided to work from the following requirements:

• On the receiver side there should be a microprocessor which is connected
to an IR-receiver and a display.

• The IR-receiver should decode the signal from a remote-control and send
the signal to the microprocessor.

• The microprocessor should show relevant information, handle user-input
and control the game.

• The game should be something similar to a game called DX-ball. The
player controls a paddle at the bottom of the screen and bounces a ball
between the paddle and different blocks above which disappears when they
are hit by the ball. The game ends when all the blocks are gone.

• If time allows it, we would build our own remote controller and make a
more complex game.

4 Components
The core of the system is of course the microprocessor, an AVR Atmega16.
This 8-bit microcontroller has 16kB of flash memory and an internal clock of
8 MHz. This makes the project more challenging (and more instructive) since
performance and resources are much more limited compared to an average PC.
The microcontroller handles the received commands form the remote, the game
logics and updates the display depending on what happens in the game. All
source-code was written in C, and we used AVR Studio 4 for writing the code
and for writing to the memory of the microcontroller. To connect to the micro-
controller from the PC we used the JTAG-interface of the microcontroller.

The display module contains a two-color LCD-display with a resolution of
128x64 pixels and three IC-controllers which are used for storing and updating
the data sent to the display. There are also two IC-modules for the backlight
and power supply. This display-module came pre-built by the institution.

To be able to receive commands from the remote-control we have used a
remote-control-detector, ELRIM-8608S, which detects IR-signals and amplifies
them. To decode the signal, an IC-module called SAA3049A is used. This
module translates the raw IR-signal into two binary integers that represents
a command and an address. The command represent which button that has
been pressed on the remote control and the address is used for keeping track of
different remotes for different devices. For example a TV might use a different
address than a DVD-player and they will therefor not interfere with eachother
since they only listen to their own address. In our system we disregard the
adress part of the data.

5 Schematics and Communication
For an overview of the entire construction, see figure 1. A description of the
overall data communication when receiving a command from the remote will now

4

Figure 1: Schematics of the construction

follow below. The first step is when the IR receiver detects the light sequences
from the remote controller, and then forwards this sequence to the IR decoder
on a special input pin. The IR decoder will depending on the mode selection and
controller button pressed interpret this sequence as some command. Different
commands will output different values on six output ports. Every time a new
complete command is interpreted a special toggle bit will also toggle, and can be
read on a special output pin. These output pins are also connected to pullups
(resistor to VCC, see the schematics) in order to keep them from floating.

Using these command bits and the toggle bit, the AVR can communicate
with the IR decoder and receive commands from the remote control. Depend-
ing on the command received, the AVR will update it’s internal status of the
different objects in play and update the LCD display with the current status of
the game. The display uses two different segments, and the AVR has to keep
track of when to write to each segment. Different command bits can be used to
control the display, for example to change to read or write mode, choose which
pixels to write to or read the status register. There is also a special bit called
the e-bit, which should be toggled from high to low to write the current input
to the display. Whenever the display should be updated, its internal memory
is first updated, and then a special command is sent to it to make it display its
current memory contents.

6 Code architecture
In the most basic sense, the code consists of a main loop which keeps polling
the toggle bit for new commands, checks how the ball and enemies should be
updated, and then writes the new status to the display. A more detailed expla-

5

nation follows below.

6.1 Main loop
The main loop initializes all the ports and different objects (ball, enemies and
paddle), and then proceeds to loop forever, polling the toggle bit, updating the
different objects by calling different functions and updates the display with the
new current status.

6.2 The Ball
The code for the ball is divided into two files, one c-file and one h-file containing
some macros and function declarations. The struct representing the ball con-
tains its current coordinates, its current angle and the direction its currently
traveling. The ball files also contain a function for checking if a certain pixel is
located inside the ball or not, which is used when updating the display. There
is also a function which checks if the ball is currently touching an enemy or the
paddle, and if that’s the case bounces the ball by changing the direction and
angle.

To represent the coordinates of the ball, we chose to use 16 bit integers in
fixed point representation, since the processor doesn’t have an FPU. We also
hard coded in a couple of predefined angles instead of using sine and cosine
functions. These numbers are then converted to integers before using them to
write to the display.

6.3 The Paddle and enemies
The paddles and enemies work very similarly to the ball. They also contain
coordinates (though not in fixed point) and functions for finding out if a pixel
is located inside them or not. The enemies also contain a variable indicating if
this particular enemy has been destroyed or is still alive.

6.4 The display handler
The display handler updates and writes to the display. It has a function for
updating the display memory and one for displaying the current memory. In
order to optimize for speed, the update memory function only writes to the
pixels where something actually has changed recently, instead of writing to the
whole 128x64 array every time. To be able to do this, some global variables are
used indicating for example if the paddle has moved or if some enemy has been
killed and so on. The last position of the ball and paddle are also saved, so that
the earlier version can be overwritten.

7 Result
In the end we managed to implement a fully working game that was controlled
using an ordinary IR remote control which is what we intended. We did have
some issues with the performance of the display which was a large bottleneck.
Despite out best efforts we were not able to optimize the performance to the
desired degree but atleast we made it to a degree which made the game playable.

6

Figure 2: The complete construction

Because of the way we handle the data received by the remote control, the
user cannot hold down the button to keep moving the paddle in one direction
but instead have to repeatedly press the button. We had a solution for this
problem but we didn’t have enough time to implement it.

Overall the course was fun and interesting.

7

