DJ HeMan

EITF40 - Digitala projekt
Mentor: Bertil Lindvall

by Robin Palmblad & Mattias Ahlstrom



Abstract

The project is about making a sound controller that has input sound from a normal 3.5mm cable
and then processing this sound. Different beats could then be added to the sound with a keypad.
The sound will then be played by connecting a 3.5mm cable to the output. A frequency spectrum
of the sound will be shown on the display.



Table of Contents

Abstract
Table of Contents
1 Introduction
2 Requirements
2.1 Hardware
2.2 Software
3 Construction
3.1 Hardware
3.2 Software
4 Problems
5 Add-ons
5.1 Added functions
5.2 Further development
6 Discussion
6.1 Resulting construction
6.2 Comments


https://docs.google.com/document/d/ssvmHnJVBUWZAtB1yrCq7cg/headless/print#heading=h.bm3ml5buyvx8
https://docs.google.com/document/d/ssvmHnJVBUWZAtB1yrCq7cg/headless/print#heading=h.pz9uxu7v41a8
https://docs.google.com/document/d/ssvmHnJVBUWZAtB1yrCq7cg/headless/print#heading=h.tdwhew7vg2ic
https://docs.google.com/document/d/ssvmHnJVBUWZAtB1yrCq7cg/headless/print#heading=h.8fiyjgb0hdw5
https://docs.google.com/document/d/ssvmHnJVBUWZAtB1yrCq7cg/headless/print#heading=h.bcn6ivnxk3pz
https://docs.google.com/document/d/ssvmHnJVBUWZAtB1yrCq7cg/headless/print#heading=h.j23gj4zi0r0
https://docs.google.com/document/d/ssvmHnJVBUWZAtB1yrCq7cg/headless/print#heading=h.rnnp0jm5vt08
https://docs.google.com/document/d/ssvmHnJVBUWZAtB1yrCq7cg/headless/print#heading=h.k9zo7zn1i1ll
https://docs.google.com/document/d/ssvmHnJVBUWZAtB1yrCq7cg/headless/print#heading=h.8nc5agfp0yej
https://docs.google.com/document/d/ssvmHnJVBUWZAtB1yrCq7cg/headless/print#heading=h.d1bosj3x7jas
https://docs.google.com/document/d/ssvmHnJVBUWZAtB1yrCq7cg/headless/print#heading=h.iicuomds5xdf
https://docs.google.com/document/d/ssvmHnJVBUWZAtB1yrCq7cg/headless/print#heading=h.k72yobcefv9y
https://docs.google.com/document/d/ssvmHnJVBUWZAtB1yrCq7cg/headless/print#heading=h.702yjcw6klzf
https://docs.google.com/document/d/ssvmHnJVBUWZAtB1yrCq7cg/headless/print#heading=h.tm63zovs4aw8
https://docs.google.com/document/d/ssvmHnJVBUWZAtB1yrCq7cg/headless/print#heading=h.f3ilmsolvm2s
https://docs.google.com/document/d/ssvmHnJVBUWZAtB1yrCq7cg/headless/print#heading=h.6k2zzkgl1hnd

1 Introduction

It's pretty common that when you go to a club there is a DJ there playing commonly known
songs that has been modified in some way. For this project we thought it would be fun to create
something similar to a DJ-board. First we had some extreme ideas about making a scratch and
be able to modify the sound in numerous ways. After discussing this further we came to the
conclusion that it would be best to make something a little bit simpler. We wanted to make a
sound controller and also be able to display the characteristics of the sound. Some research
was being made and we came up with the idea of making a sound controller with a 3.5mm cable
connected to a sound source and another cable connected to a speaker. Beats would be able to
be added to the sound and a frequency spectrum of the sound would be displayed on a
LCD-display. This solution felt reasonable and doable so we started making a sound controller
with these functions.

2 Requirements

The initial requirements weren’t very specific. It only contains the minimum parts that could be
needed for our implementation. When all parts of the construction was collected then the
requirements became clear and is described below.

2.1 Hardware

The project is about making a sound controller that can display properties of the sound and add
beats to the sound and therefore the following hardware parts were used:

3.5mm jack - for the input sound

3.5mm jack - for the output sound

ATmega16 - the processor

MM74C922 - 16-Key Encoder for the keypad

4x4 keypad - 16 buttons keypad

TLC7524C - 8-BIT multiplying D/A converter for the output sound
GDM-12864C - 128x64 graphical display

The ATmega16 has a built in A/D converter which could be connected to a 3.5mm jack for the
input sound. The keypad is connected to the processor through a key encoder. The graphical
display has a built in encoder and is therefore connected directly to the processor.



2.2 Software

Input to the sound controller is from a sound source through a 3.5mm cable and the sound shall
be played on a speaker connected with a 3.5mm cable. Samples of the sound will be made and
its frequency response shall be displayed on a display. Beats can be added to the original sound
by pressing the keypad. Beats can be played once, looped or in a pattern. Beats and patterns
can be turned off by pressing the button again. The pace of the beats can be adjusted.
Everything is in real time.

3 Construction

3.1 Hardware

Our construction consists of an ATmega16 microcontroller running at 16MHz. The
microcontroller is connected to a 3.5mm jack for audio input, an external D/A converter which
produces the output audio signal, a 4x4 keypad for user input and an LCD display with dedicated
controller circuits. The keypad is connected to the microcontroller using a 4x4 decoder which
converts the 8 signals used to control the keypad to a more manageable 4-bit data bus and
interrupt signal. The D/A converter and the LCD display share a common 8-bit data bus which is
routed to the correct device using their respective control signals.

The ATmega itself samples the input signal using the built-in A/D converter in differential mode
(using both positive and negative terminals from the input signal instead of common ground) at
10x gain. Two LEDs on the board indicate if the input signal is too high (red LED flashing or
constantly lit) or too low (yellow LED lit). Output from the D/A converter is connected to another
3.5mm jack where an external amplifier can be connected. Connecting headphones or speakers
without a built-in amplifier directly to the 5V output is NOT recommended.

Reset D/A Conv AVR ATMega16

Decoder 128x64 Pixel LCD Display

O 4x4 Keypad

LED Indicators




3.2 Software

The program starts in the Setup phase, where the microcontroller inputs and outputs are
configured, the display is reset and turned on. The A/D converter is configured for free running
mode where it will continuously sample the input signal and generate an interrupt when the
conversion is complete. Using the ADC prescaler to divide the CPU frequency by x32 we were
able to get a sample rate of approximately 38kHz (each conversion takes 13 ADC cycles), which
suits our application very well.

At the end of the setup phase interrupts are enabled and the main loop kicks off, initially waiting
for the sample buffer to fill from the ADC interrupt. When one of the two sample buffers is full
(256 samples per buffer) the Fast Fourier Transform(FFT) function is executed on the buffer to
produce the frequency spectrum to be displayed on the LCD. Once the display has been
updated the sample buffer is returned to the ADC to be filled again.

The ADC interrupt routine reads the data registers of the A/D converter, steps through the
pre-programmed patterns (if enabled) and adds any ROM samples which are currently playing.
The data is then placed into the current sample buffer, rotating the two buffers as they fill up.
Finally the status LEDs are updated and the data is written to the D/A converter.

The keypad interrupt routine simply reads the 4-bit value from the decoder and toggles the
relevant state. Keys 0-3 trigger playback of each of the 4 ROM samples, keys 4-7 toggle simple
repeating patterns while keys 8, 9 and C toggle more complex patterns. Keys B and F are used
to increase or decrease the tempo (BPM) of these patterns. To avoid jitter in the sampling
routine we only disable interrupts during a short time when the display update routine needs to
access the data bus. In the final version of the code, interrupts are disabled for no more than 8
sequential instructions.

\
ADC Interrupt Setup | Keypad Interrupt
1’ W v
Input from ADC Main Loop Input from decoder
Add ROM sample Run FFT Toggle pattern or

Fill sample buffer un play sample

Output to DAC Update Display




4 Problems

During the development, not entirely unexpected, we had some problems. It was especially hard
in the beginning since we got a new problem as soon as we connected a new hardware part.

Our first problem was with just getting the debugger to work which didn’t feel good at all. After
checking with other groups which had gotten the debugger to work we asked our mentor to help
us. It appears that the microcontroller was set to use an external clock, which we didn’t have.
The microcontroller was changed to use an internal clock and then it worked. This setting was
changed back once we actually installed our external clock.

We used a LCD display which turned out to be more problematic than we thought. The display
kept turning itself off every now and then. We tried to make it turn off by jiggling the cable but it
didn’t work so we weren’t sure what the problem was. First we tried with other cables but the
problem didn’t go away and at last we changed display controller and with the new display
controller it worked fine.

For our construction we needed three peripherals connected to the processor(key encoder,
display, D/A converter) this led to that all pins of the processor were used and we needed more.
Our first idea was to use a multiplexer but then we got to the better idea to use the same pins for
both the display and the D/A converter.

Expectedly we had some problems with getting perfect sound as output. When we got sound we
were able to hear what we played but it didn’t sound especially good. We connected an
oscilloscope and found that the negative values where over the positive. This is because the D/A
converter can’'t handle negative values and therefore translates a negative value to a high
positive value. To fix this a value was added to the output value that made the lowest value
possible to be 0. After fixing the negative values the sound was pretty good but some noise could
still be noticed. To remove this noise two 100nF capacitors were added, one at the input and one
at the power supply for the A/D converter.

At the end of the work with the controller beats were added. Problems with the memory then
occurred. First we had a problem that the data of the program couldn't fit into the RAM-memory.
This was solved by modifying the beats and move them to the ROM-memory along with the
sinus wave needed for FFT. Both the RAM- and the ROM-memory were now almost full and
when we ran the program we still had some problems. The stack filled the RAM-memory so that
strange things occurred. This was solved by optimizing the code and then the program ran again
and with beats.



5 Add-ons

5.1 Added functions

A reset button was added to make debugging and restarting the program more simple.

Also for making the debugging easier LEDs were added to the construction. The LEDs lights
when the output sound is maxed or when the sound has been off for a short time. It lights red for
maximum volume and lights yellow for no sound.

To be able to adjust the volume a potentiometer was added to the construction. It was
discovered that when the potentiometer wasn’t set to maximum or minimum it produced noise to
the output signal.

5.2 Further development

The current program fills the memory of the current processor, so to make any further
development with the existing hardware will be difficult. However if the processor is changed to
one with bigger memory and at least with the same clock frequency as the existing one
improvements can be made.

Some obvious improvements as adding more beats and patterns can be made.
Changing between showing the audio loops patterns and the frequency spectrum on the
screen.

Make own patterns with the keypad.

Add a scratch effect.

Use better/more ADDA converters to allow 16-bit sound.

Add support for stereo sound.

6 Discussion

6.1 Resulting construction

The project resulted in a nice sound controller that has input sound from a 3.5mm cable and
sound out through a 3.5mm cable. A frequency spectrum that is shown on a graphical display.
Beats that can be added to the sound by pressing buttons on a keypad. Lights that shows
maximum output or no output. A volume controller.



6.2 Comments

We had some trouble starting out with unfamiliar and sometimes even broken hardware but in
the end it turned out better than we had dared to hope for. The hardware works as intended, the
software seems very stable and we fulfilled most of the original requirements.



