
Lund University

Digital projects
EITF40

Battleships gaming system

Author:
Niklas Hjern
Jonas Vistrand

Supervisor:
Bertil Lindvall

March 4, 2013

Abstract
The purpose of the project was to construct a gaming system pre-programmed
with the game Battleships. The game consists of two parts, singleplayer and
multiplayer. The singleplayer game is played against a computer AI with the
ability to play the game making logical decisions based on previously made
guesses. The multiplayer game is played against another system by connecting
the two using the communication protocol SPI. The system itself consists of
a microprocessor of type ATmega16, a 16 digit keyboard and a 128x64 pixel
LCD display. Every input to the game is read from the keyboard and the
game is controlled by entering the coordinates of a guess, consisting of a letter
A-F and a number 0-9, on the keyboard. Upon powering up the system the
user is presented with the two previously mentioned choices and also a third,
highscores, which presents a list of the 5 previously lowest scores and the initials
of the corresponding player.
By the end of the project the singlepayer part of the game was finished and fully
functional. The multiplayer part however was implemented but never tested.

Contents
1 Introduction 1

1.1 Initial specifications . 1

2 Hardware 1

3 Software 3
3.1 Battleship . 3
3.2 Game . 3
3.3 GameUtil . 3
3.4 Display . 3
3.5 Draw . 3
3.6 Keyboard . 4
3.7 AI . 4

4 Theory 4
4.1 SPI -Serial Peripheral Interface 4

5 Execution 5

6 Results 8

7 Discussion 8
7.1 Evaluation of project . 8
7.2 Improvements . 8

7.2.1 General . 8
7.2.2 Security . 9

8 References 9
8.1 Figures . 9

N. Hjern, J. Vistrand 1

1 Introduction
The purpose of this project was to program a version of the game Battleships
on an ATmega16 microcontroller and display it on an LCD display. The game
was to be played against an opponent with a similar microcontroller as ours
using the communication protocol SPI.

1.1 Initial specifications
The playing field should consist of a 6x10 matrix where the user can deploy
a specified number of boats with sizes ranging from 2 to 3 squares. To let
the player communicate with the microcontroller when e.g. placing a boat on a
coordinate in the matrix, a 16 digit keyboard (0-9 and A-F) is to be used. During
the course of the game the playing field is at all times displayed on a 128x64
LCD display for the users viewing purpose. Multiplayer is to be implemented
using SPI communication, letting two players with different microcontroller play
against each other. The game is over when all boats belonging to one of the
players are sunk, at which point the winner should be declared and the option
to play again is to be displayed on the screen.
Due to outer circumstances the above specifications regarding the game modes
was not followed as a sigleplayer option in addition to the multiplayer option
was implemented in the final product. Unfortunately the multiplayer part was
never properly tested, although there is no reason to believe that presented with
an identical chip as the on used in this project it wouldn’t work as expected.
A bigger emphasis was therefore put on the singleplayer part which allows the
player go head to head against an AI with several different difficulty levels. To
read more about this you are refered to the Software and Execution sections of
the report.

2 Hardware
• ATMEL ATmega16 microprocessor

• GDM12864C 128x64 Graphics Display

• 16 digit keyboard

• 54C922 16 key encoder

• Reset button

The base of the system is the ATmega16 microcontroller. Connected to this is
the display, the key encoder and a reset button to be able to reset the system.
A 16 digit keyboard is connected to the key encoder which when a button is
pressed reads the signals from the keyboard and translates them to a four bit
number that equals the value of the button that was pressed. As the key encoder
is connected directly to the ATmega16 the output enable pin on the encoder

N. Hjern, J. Vistrand 2

is grounded. The display is also connected directly to the ATmega16 and is
controlled by issuing a set of instructions that sets the internal RAM of the
display to a certain value. The display then internally reads from this RAM
as it displays content. This simplifies the process by not having to constantly
send instructions to the display, instead signals are only sent when changing the
content on the display. The display consists of two halves that are written to
one at a time. Which half is currently active is chosen with the two signals CS0
and CS1.
The full schematics of the system is seen below.

Figure 2.0.1: Full schematics

N. Hjern, J. Vistrand 3

3 Software
The game code is written in C and can be split up into several different main
blocks that perform different tasks. The functionalities of these blocks are briefly
described below and to view them in their entirety the reader is referred to the
source code.

3.1 Battleship
Contains the main loop that runs through the entire program. When the pro-
gram runs the player is greeted with a welcome message and 3 different alterna-
tives (1. singleplayer, 2. multiplayer, 3. highscores). The program then waits
for user input before it executes the users choice. When the game is over the
winner of the match is displayed on the display and if a highscore is achieved
the player are asked to fill in their initials. This highscore is then saved to the
EEPROM so that if the power to the circuit is broken the highscores remain in
the memory. Finally the greeting screen is displayed and the player can choose
to continue playing.

3.2 Game
Controls how the actual game is played. It lets the player place their boats on
the playing field and then depending on if it’s single- or multiplayer executes
the propriate actions, e.g if it’s in singleplayer mode the AI randomly places the
specified number of boats on the playing field. The game can then start and
the player that gets to start guessing is randomized. After a move is made the
turn goes over to the other player and so it goes until one players boats are all
sunk and the game is over.

3.3 GameUtil
Contains a couple of useful functions that e.g. reads and writes to the EEPROM
and creates random variables.

3.4 Display
Contains all the instructions that are used to communicate with the LCD dis-
play.

3.5 Draw
Contains all the data instructions that needs to be sent to the display for all
the drawing and writing that is done during the game. Contains e.g. a text
function that, given a string of maximum size 16 characters and a row number,
writes that text to the screen on that row.

N. Hjern, J. Vistrand 4

3.6 Keyboard
This is where all the communication with the 16 digit keyboard is done. When
e.g. coordinates are given the program has to wait for two inputs, one digit that
is A-F and one that is 0-9, if these conditions are not met the program will wait
for other inputs until they are. These coordinates are then compressed into one
byte using concatenation and returned from the function.

3.7 AI
When the game is in singleplayer mode the AI is activated and makes the
opposing players guesses. At the hardest difficulty the AI is able to guess around
a hit appropriately and randomly guesses in a grid fashion making sure that
unnecessery guesses are never made.

4 Theory

4.1 SPI -Serial Peripheral Interface
SPI is a communication protocol that operates in master/slave mode where all
the communication is full duplex and needs to be initiated by the master. The
protocol need 4 logical signals ot work:

• SS – slave select that is active low.

• SCLK – the clock signal that is controlled by the master.

• MOSI – master output and slave input.

• MISO – master input and slave output.

Figure 4.1.1: SPI with one Master and one Slave

The communication is initiated when the master loads a designated shit register
with information. The master then shifts out all the bits stored in the register
at the same time as it shifts in the bits located in the slaves designated register.

N. Hjern, J. Vistrand 5

Figure 4.1.2: SPI transfer example

5 Execution
As described in earlier parts of this report the initial idea was to put empha-
sis on the multiplayer component of the game, i.e. being able to communicate
with a similar system through SPI and this way allow two human players to
play against each other. It was also initially believed that the difficulties of
the project would lie in the hardware part of the project, i.e. the assembly of
the different components. The original program to be run on the system was
therefore quite restricted and contained only the essential functionalities. It was
quickly discovered however that the assembly of the components was not as dif-
ficult as expected as this part of the project was finished in just a few days. The
decision was then made to enhance the software part of the project to involve a
singleplayer component as well in the form of an AI that a human player could
play against on a single machine. Before this could be implemented however,
software had to be written that could interpret signals from the keyboard and
actually display content on the display. The keyboard software was the first to
be implemented as this was imagined to be the easiest, something that later
turned out to be true. Once this was in place focus could be shifted to the
display. This would turn out to be a bit of a harder problem to solve. The
documentation provided all instructions needed to control the display RAM,
so implementing this part was done fairly easily. The difficulty lay in the syn-
chronisation of the signals so that the correct information was displayed on the
intended position of the screen. This was not as thoroughly described in the
documentation and had to be figured out by trial and error and was not fully
understood and implemented until the very end of the project.

Once the display was working, be it with a few glitches, functions for drawing
actual symbols, e.g. boats, numbers and squares, had to be implemented. The
playing field consisted of 6 x 10 squares with letters A-F on the left hand side
and numbers 0-9 below, used in the game as coordinates. Boats were realized
as circles, a miss as an X and when a boat was hit it turned into a circle with
an X in it. Numbers were implemented by sending a number to a function that
then drew this number on the display and letters were implemented in a simi-
lar manner. These functions were sufficient for drawing an entire playing field

N. Hjern, J. Vistrand 6

spanning both halves of the display. To display text however a separate func-
tion had to be implemented, as it would have been highly inefficient to manually
call upon the function for drawing individual letters for every letter in the text.
A function was designed that could take a string and the row where the text
should be displayed as input and display this string on the display, centred over
the two halves. With this completed the next thing to implement would be the
AI of the game.

Figure 5.0.3: Start menu

Figure 5.0.4: The playing field

The AI would have to be able to do a number of things in order to play Bat-
tleships. It would at first have to be able to place out boats at random for
the player to find. It would then have to be able to guess the location of the
player’s boats and if a boat is found place the next guess according to its pre-
vious findings. The first thing to be built was the random placement of boats.
The difficulties here lay in that all parts of the boat has to be in a line and
that no part of the boat should be placed outside the playing field. This was
implemented fairly quickly, but upon testing quite a big flaw was discovered. It
turned out that the pseudorandom generator of the ATmega16 is not random

N. Hjern, J. Vistrand 7

at all and always generates the same numbers upon every start up. This meant
that the boats of the AI would always be placed in the same position. This was
solved by writing a value to the EEPROM of the ATmega16, a register that
saves values even when the power is removed, that was read and incremented at
every start up. Using this value made it possible to build a random generator
that gave new values every time the system was turned on.

The next issue to deal with was how to make the AI guess as a human player
would, namely if a boat is hit the next guess is placed around this hit and if
two hits are made and the boat is not sunk the next guess is placed in line with
the other two hits. Several versions of the AI had to be implemented before
this feature could be realized. The first one just placed random guesses and
only checked if a previous guess had been made on a coordinate before placing
a guess there. The next version knew if a boat was hit and could guess near
this hit, but it did not know if the boat in question was already sunk and it
could not recognize a boat consisting of three dots. The version after this knew
when a boat was sunk and did not guess near this one again and yet another
version later the ability to guess correctly on a boat of size three was finally
completed. A final addition to the AI was made before completion, the ability
to never place two guesses next to eachother, something that greatly reduces
the number of guesses but not restricting the ability to find all boats.

As time was not running out as the AI was completed the decision was made
to implement a function that made it possible to save and display highscores.
Score is measured in the total number of guesses before winning and to not
have these scores disappear every time the system is shut down they have to be
written to the EEPROM. A function to read and write an array from/to the
EEPROM was constructed and later functions that added scores and initials
to this array were also built. Initials are entered by the player after winning a
game with a score that puts him/her on the highscore list. Initials consists of
three letters that are read from the keyboard. Highscores can be displayed by
choosing this alternative in the start up menu.

As the singleplayer component of the system was now fully implemented and
functional, work was started on multiplayer and communication with SPI. The
game itself was not hard to implement as most of the components already existed
as part of the singleplayer game. Instead of letting the AI place a guess the
system would instead wait for input from the SPI registers and when the player
was to guess his guesses were sent over SPI instead of being put on the AI
playing field. The challenge here lay on setting up the SPI protocol correctly
and writing the necessary functions to use this protocol. The protocol turned
out to be very simple and functions that used this were constructed, but as the
second system that was to be the opponent was not completed at this time none
of the SPI functions could be tested and this part of the project was put on ice.

N. Hjern, J. Vistrand 8

6 Results
The final product is a Battleships game with a fully functional singleplayer mode
with 3 difficulty levels on the opponent. The multiplayer part is implemented
but never truly tested. The communication between the ATmega16 and the
display works flawlessly and the game is easy to understand for the player since
it’s easy to write text on the display. In singleplayer mode there are 3 difficulties
on the AI, with the easiest being the computer guessing only randomly and the
hardest, with the same amount of information as a human player would have,
not making any unnecessery guesses at all. After the game the number of
guesses it took for the winner is checked against a highscore table located on
the controllers EEPROM. If the result belong in the highscores the table is
updated accordingly and the player is asked to enter their initials. This table
can then be viewed at the starting screen.

7 Discussion

7.1 Evaluation of project
In general the project was a success. We achieved most of the goals we initially
set up, with the exception of the multiplayer part. In the beginning our idea of
the difficulties were a bit off, as we thought that the assembly of the hardware
would be the most time-consuming. Before long however we understood the
scale of the project and could modify our initial specifications to match this. We
managed to spread out the workload rather well which resulted in the project
not being a burden but rather something very fun and educational. We also
managed to include small milestones along the way which gave us a steady
feeling of accomplishment, something that made it a lot easier to work with.

7.2 Improvements
7.2.1 General

The most obvious improvement to be done is to actually test the multiplayer
part, making sure that it’s functional thereby adding another dimension to the
game. Another improvement to be made would be to have more printouts on
the screen to aid the player in their playing, telling them e.g. how many boats
they should place and the general rules of the game. The reason this hasn’t
been done is that so far the only ones playing the game has been the creators
of the project and thus such information felt redundant at the time. However
if the game were to be launched side by side with the new PS4 the addition of
such informational screens is highly recommended.

N. Hjern, J. Vistrand 9

7.2.2 Security

Although the multiplayer part of the game isn’t functional one can’t keep from
wondering how this could be implemented in the best way and most important
of all keep malicious players from cheating. First of all it’s important not to
share the correct boat placement to your opponent by sending them your boat
matrix. If this is done then don’t be sursprised if your opponent magically
always finds your boat on their first try. The solution to this is that instead of
sending the correct matrix, you send your guess coordinate and ask them if it’s
a hit or a miss after each guess. This is how the multiplayer aspect of the game
in the project is implemented. However this will lead to the problem that the
opponent can always lie about the guesses being misses when actually a boat
is hit. This is where there is room for improvements. A solution to this would
be to have both players exchange their playing field matrices with each other
after the boats is placed, not in plaintext but hashed so that you cannot retrieve
the correct boat placement from the hashvalue. When the game is over the two
players exchange their matrices in plaintext with each other, these matrices are
then hashed and compared to the original hashvalue to see if the final matrix
is the same as the one they started with and thus making sure no cheating has
been done.

8 References
ATMEL ATmega16 Datasheet
http://www.eit.lth.se/fileadmin/eit/courses/edi021/datablad/Processors/ATmega16.pdf

GDM12864C Graphic Display Datasheet
http://www.eit.lth.se/fileadmin/eit/courses/edi021/datablad/Display/GDM12864H.pdf

54C922 Key encoder Datasheet
http://www.eit.lth.se/fileadmin/eit/courses/edi021/datablad/Periphery/Other/MM54C922.pdf

8.1 Figures
Figure 4.1.1
http://en.wikipedia.org/wiki/File:SPI_single_slave.svg

Figure 4.1.2
http://en.wikipedia.org/wiki/File:SPI_8-bit_circular_transfer.svg

