
Department of Electrical and
Information Technology

Digital Project
EDI021

Robot

Andreas Lord
Zongyi Jiang

Baydai Abdulameer

2010-05-15

Abstract
There are several steps in the process of building a robot prototype. Designing

and choosing components. Assembling the hardware. Writing software.

In a dream world all of this will work straight away, but it never does in the real

world. While building this project, there were a lot of problems and solution were

found to most of these problems, but not all of them.

This project is based around ATmega 16 micro controller and the JTAG

developing interface. The were a lot of problems with these components together

with the electrical engine. The project consumed several processors during its

developing stages, and the reason for way these processors faulted is not really

clear.

Context

1.Introduction..………..1

2.Requirements...1

3.Hardware..2

4.Execution..4

5.Result and Discussion..6

6.References...8

Appendix A – Schematics......................................9

Appendix B – Source code....................................10

Appendix C – Photos...13

Introduction

The purpose with this course is to illustrate how developing a new prototype can

be done in the industry. The group is suppose to, from their own idea, design and

build a prototype based around some logics or a micro processor.

This project built a robot that can manoeuvre by it self without hitting any

obstacles in its surroundings.

Requirements

The requirements were set up at the beginning of the project as follows:

•The robot should drive around in a room with out hitting anything

•The robot’s movement is controlled with a start/stop button

•The robot should stop completely if it can not avoid a collision

There were also some extra requirements in case of time in the project:

•The robot should display the way it walked

•The robot should be able to back out of a corner

•The robot should remember were it’s been and never walk the same way

twice

1

Hardware
The project is based on several important hardware components. The robot is

controlled via a AVR ATmega 16 micro controller. To be able to detect obstacles

the robot has two Sharp 2YOA02 analog distance sensors.

The robot is powered with a 6 volt electrical battery, but the components use 5

volt so a LP3855 voltage regulator is used. The mechanical part is based on two

engines directly connected to one wheel each, via a small gearbox.

To control the engines with a digital signal a L298 full bridge driver is used.

To show the way the robot walked, the prototype have a GDM12864HLCM matrix

display. Also two buttons and two led-lights are used, for controlling and showing

state of the robot.

ATmega16

The ATmega161 is a 8-bit micro controller with 16 Kb memory. It has four 8 bits

I/O ports, which can be used either as standard digital I/O or as some special

functions. Some of the special functions that were used are AD converters and

external interruption triggers. To program the microprocessor a J-tag interface

was used, this connects the processor with the developing environment in a PC

via USB.

Sharp 2YOA02
The distance sensor that was used in this project is an analog distance sensor. It

has a range of 20 -1502 cm with a angel of 8-603 degrees. it generates a analog

voltage depending on the distance to an object, the closer the object is the

stronger signal. Distance sensor has three connections, one for power supply,

one to ground and one for signal.

L298
To control the engine with a digital signal a dual full bridge driver4 were used.

One for each engine. The full bridge takes two power supplies, one for the

electronically logics and one stronger that is for the out put pins. The out put is

2

controlled via three digital signals per bridge, ln1, ln2 and enable.

The bridge allows using two wheels and this can control both wheels individually,

either to left, right or let it roll freely.

LP3855
The LP38555 is a voltage regulator, that takes a input voltage up to seven volt,

and generates a 5 volt output with an accuracy of ±1.5%. These ultra low dropout

linear regulators respond very quickly to step changes in load, which makes them

suitable for low voltage microprocessor applications.

GDM12864HLCM
The display that is used is a matrix display6 with a resolution of 64 * 128 pixels. It

is divided up into two equal halves of 64*64 pixels that are switched via chip

select.

You can send two kinds of commands to, instructional-command and data-

command. Instruction commands were for to choose where in the screen we

wanted to write and data-commands were to write a byte (8 pixels in a row) at

the selected location. The instructions were to select the x and y coordinates.

3

Execution
When the requirements were set up and approved, the schematics were drawn

up. After a little consulting with the project supervisor, and the schematics were

approved the construction began. There were some miner problems with the

construction, but it was solved easily. The major time spent on the construction

was the placement of the parts. The schematics did not specified physical layout

of the components. All components where assembled at the same time.

The prototype is based on one rectangular circuit board with all the components,

except the engine with wheels and gearbox, on the up-side. On the same side all

power cables are laid out and soldered to corresponding pins. On the other side

all logical cables are wired. The engine with wheels and front wheel is of the

same hight so it naturally was attached to the down-side of the board, giving the

board a horizontal level. A second circuit board holding the screen is placed over

the first circuit board on four screws.

When the robot was build the programming started, first a small test program

was written to ensure all parts worked as they should. Here we found out that

one of the distance sensors did not work as intended, so it got replaced.

Next step in the programing was to learn all the special functions that the micro

controller had. For example how the AD-converter1 worked or external interrupts

or the internal timers.

The program is based on a few different parts, all written in the same main file.

The first part is the main function that only first calls the set up function setReg()

and then have three if statements that determent if the engines should be turned

of or on due to obstacles detected by the distance sensors.

1 AD-converter = analog to digital conversion. The distance sensors gives a analog signal that needed to
be converted to digital so that the micro controller can use the information.

4

The second part is the interrupt routines. There are one routine for every type of

expected interrupt and one general that handles all other interrupts. The general

interrupt routine is not doing anything in this prototype.

The interrupt routine for the external interrupts is turning on or off the engined

depending on if the engines are on or off before the routine is called.

We are using a timer to activate the DC-conversion, when the timer is started it

will run for ever. The timer is basically a counter that counts up, and every time

the counter hit its maximum value it will trigger a interrupt and start over from

zero.

The timer interrupt routine start a new AD-conversion. When the a AD-conversion

is done, a AD interrupt is called. The AD interrupt routine saves the value of the

conversion to a variable and then change the settings for the AD to the other

sensor.

The last part is the set up function that sets up all the ports to be either out or in

put according to the schematics. It also set up the special functions like which pin

is just for external interrupt, and which pins is used for the AD-conversion, and it

enables interrupts via the sei() function.

One of the extra requirements were to display the way the robot walked on a

display. A solution for this was started, but not finished. All hardware bits were

added, but a working software solution was never reached.

5

Result and Discussion
In the beginning of the project there were not so many problems, the schematics

were rather pain free constructed, with some miner hints and tips from the

supervisor. This part of the project demanded a lot of reading in component

manuals to find out if this is the component that can be used in this project.

The construction part started good, with most time spent on actually planing

where to put the different parts on the circuit board. We think we made a rather

optimal design for both testing purpose and using the prototype.

After writing some test program we found out that one of the sensor was not

working correctly, but due to the design it was easily changed.

In the next phase of the project the real big problems started. We had a small

program where the external interrupt should give a enable the h-bridge so that

the engine would run. But there were some major problems flashing the micro-

controller. We ended up blocking 5 different micro controllers some how. While

trying to run our program in debugging mode the micro controllers lowest

registers called fuses got changed, causing the micro controller to get blocked for

the interface used to flash the micro controller. In the end we still have no real

solution to this problem, we made some minor changes in the code and then it

worked.

We added on the functionality of the AD-conversion with its interrupt, and got this

almost to work. The conversion was continuously starting over when one

conversion was done. For testing purpose we first just turned on one of the LED-

lights when a detections value was greater then a trigger value. This worked all

good, but when we changed to turning on/off the engines instead of the LED-

lights nothing worked, and the micro controller got blocked again. To solve this

we added a timer that trigger an interrupt, and on that interrupt we start a new

conversion. By doing this we released some working load of the processor and

6

this made the conversions to work fine with the engines.

The last part added on to the project was the writing to the screen. When

designing the hardware we already thought of this, so adding the hardware was

easily done. We never reached this requirement though, due to several

problems. we had a jumping reset signal, and never got to communicate with the

screen. The debugging environment behaved really peculiar way, it jumped from

instruction to instruction in a random way. The reason for this we never found out,

but most probably it was due to the hardware.

One general reason for some of our problems can be because of the engines.

When they are turned of, the still run in a free wheel mode for a short period of

time. During this the engines actually works as a generator, which generates a

currant that our prototype does not take care of.

7

Refrences
[1] Atmel Corporation, "8-bit AVR Microcontroller with 16K byte In-system

programmable flash", 2003

[2] Sharp corporation, "GP2Y0A02YK0F", Reference manual, 2006

[3] Acroname Inc.
 "http://www.acroname.com/robotics/parts/R144GP2Y0A02YK.html",
Web page, 2010

[4] STMicroelectronics, "L298 DUAL FULL-BRIDGE DRIVER",
Reference manual, 1998

[5] National Semiconductor Corporation, "LP3852/LP3855
1.5A Fast Response Ultra Low Dropout Linear Regulators",
Reference manual, 2005

[6] Unknown, "GDM-12864C", Reference manual,

8

http://www.acroname.com/robotics/parts/R144GP2Y0A02YK.html

Appandix A - Schematics

9

Apendix B – Source code
#define TRLV 60 // Pre defined triger level

for AD-converter to turn
on

#define STLV 100 // Pre defined triger level
for AD-converter to stop
on

#define LEFT 0 //
#define RIGHT 1 // Macros
#define OFF 0 //
#define ON 1 //

#include <avr/io.h> // IO libary
#include <avr/interrupt.h> // Interupt libary

void setReg(); // Initial the setup function
volatile int on_off; // Boolean variable that

defines if the engine is
running or not

volatile int det_right; // Varible to store value
from sensor 1

volatile int det_left; // Varible to store value
from sensor 2

volatile int left_right;

int main(void) // Main method
{

setReg(); // Call for setup function

 while(1){ // Eternal loop
if(on_off == ON){

if (det_right >= TRLV){
PORTC &= ~_BV(PC7);

}else{
PORTC |= _BV(PC7);

}
if (det_left >= TRLV){

PORTC &= ~_BV(PC6);
}else{

PORTC |= _BV(PC6);
}

}
}

 return 0;
}

ISR(INT0_vect) // Interuption rutine for
external interuption
through button

{

10

if(on_off == OFF) {
on_off = ON;
PORTC |= _BV(PC6)|_BV(PC7);

}else{
on_off = OFF;
PORTC &= ~_BV(PC6)&~_BV(PC7);

}
}

ISR(ADC_vect) // Interuption rutine for AD-
convetion

{
if(left_right == RIGHT){

det_right = ADCH;
left_right = LEFT;
ADMUX |= _BV(MUX0);

}else{
det_left = ADCH;
left_right = RIGHT;
ADMUX &= ~_BV(MUX0);

}

}

ISR(TIMER0_OVF_vect) // Interuption rutine for
overflow on timer

{
ADCSRA |= _BV(ADSC);
PORTD ^= _BV(PD0);

}

ISR(BADISR_vect) // Default interuption rutine
{

}

void setReg() // Setup function
{

on_off = OFF; // Set bollean
det_right = 0; // Give varible start value
det_left = 0; // Give varible start value

DDRD |= _BV(PD0)|_BV(PD1); // Set pin PD0 and PD1 to output
PORTD &= ~_BV(PD0)&~_BV(PD1); // Give output value 0 to pin PD0

and PD1

DDRC |= _BV(PC6)|_BV(PC7); // Set pin PC6 and PC7 to output
PORTC &= ~_BV(PC6)&~_BV(PC7); // Give output value 0 to pin PC6

and PC7

TIMSK |= _BV(TOIE0); // Enable timmer interupt

GICR |= _BV(INT0); // Enable external interupt 0
MCUCR |= 0x03; // Setting external interupt to

trigger on rinsing flank

11

sei(); // Call for function that
activats interuption

left_right = LEFT; // Setting varible
ADMUX &= 0x00; // Clearing register
ADMUX |= _BV(REFS0)|_BV(ADLAR); // Selcting reference to ADC
ADCSRA |= _BV(ADEN)|_BV(ADIE); // Enable AD converter and

interupt for ADC

TCCR0 |= _BV(CS02);// // Starting timmer with 256
prescaling

}

12

Apendix C – Photos

13

