[image: image10.emf]

Does current value = last value

[image: image11.emf]

Does current value = last value

Digital Project

Aryos Muhsin

Matthew Cook

Group 17

Digital Analyzer
[image: image12.wmf]ATmega

32

C

1

+

V

+

C

1

-

C

2

+

C

2

-

V

-

T

2

out

R

2

in

R

2

out

T

2

in

T

1

in

R

1

out

R

1

in

T

1

out

GND

VCC

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

68

µ

F

68

µ

F

68

µ

F

68

µ

F

(

RXD

)

PD

0

(

TXD

)

PD

1

105

µ

F

VCC

GND

4

,

7

k

+

5

Volts

AVCC

RS

232

To Computer

From Computer

TTL

0

to

5

10

k

10

K

10

k

+

,

-

3

.

5

to

5

10

k

10

k

20

k

+

,

-

7

to

10

-

5

10

k

10

K

10

k

10

k

10

k

20

k

+

,

-

7

to

10

+

,

-

3

.

5

to

5

Input PA

1

Input PA

0

RESET button

70

k

RESET

TTL

0

to

5

Input PA

4

Input PA

5

GND

DEBUG

Input PA

0

Input PA

1

Input PA

4

Input PA

5

Circuit Diagram

DigiScop

By

:

Matthew Cook

Aryos Muhsin

Abstract

How can you construct a digiScope, digital analyzer?

That was the question we asked ourselves when we wanted to start this project.

We based the project on analog electronics and used the mega32 chip as a processor.

In this rapport we will explain how we constructed and used our combined knowledge of electronics to program and produce a working two-channel digiScope that will display all its information on a computer screen. The user will be able to connect two outside signals to the digiScope and use the computer as an interface. The user will also be able to sample and trigger the signal.

Table of Contents

1Digital Project

2Abstract

3Table of Contents

4Introduction

4Method

4Construction

5Circuits

7Software

7Java Application

10C program on Mega32

14Communication

15Time log

17Appendix A – Pictures

19Appendix B – C Source

20Appendix C – Flowcharts

20C – Checking for Trigger

21C – Processing UART Received Data

22References

Introduction

How can one construct a simple but reliable and portable digital analyzer?

By using the mega32 processor chip and several other simple but key components one can do just that. Connect the signal you want to measure to a board where the mega32 chip is installed and does all the computations, such as sampling and trigging. Then display any given signal through a desired computer. The connection between the computer and the board is through a serial port (RS232).

Our digiScope has two channel inputs that allow you to measure any digital signals.

The mega32 processor is simple enough and has enough memory so that the user can use the board to sample signals and trigger them.

The sample rate will be max 128 bits, and the trigger fallows that. It is enough to get accurate information of most signals.

Method

Construction

The general principle for the construction was to make it as easy and simple as possible but still be able to deliver design specifications. When it comes to any construction of any sort complications develop when the design of the circuit is too complicated.

The ATmega32 microprocessor was the central brain of this project. Its capacity for being a fast processor and its memory storage made it the ideal hardware component.

The communication between the microprocessor and a computer was made through a serial connection (RS232), for complete circuit diagram go to appendix A.

This project uses digital signals. By using several OP- amplifiers the control of signals was maintained. The usage of amplifiers is a must because the microprocessor is built op of transistors, and those transistors use Transistor-transistor logic (TTL) to communicate logic-gating functions.

Digital signals are defined as high and low signals, or 1 and 0, they were controlled through simple electronics. The OP-amplifiers invert the incoming signals (Vin) between plus or minus 3,5V to 5V and plus or minus 7V to 10V. The outgoing signal is ether –V or +V, were –V is defined as high or 1 and +V is low or 0.

TTL has limitations of signal strength. They are between +-5. Thusly the second signal has, +-7 to 10, to be divided in half. That is easily accomplished by using

Rf = 10k(and R=20k(, observe figure 1.

The third TTL signal needs no tampering. That signal goes strait into the microprocessor. It is defined as 0V to 5V. Were 0 is low or 0 and 5V is high or 1.

Circuits

Op-Amp

[image: image1.wmf]Rf

R

Vin

V

0

Figure 1) OP-amplifier

Overall Circuit

[image: image13.emf]

Does current value = last value

Software

Analysis of the digital signals received by our design is accomplished primarily in software on the MEGA32 Microcontroller. The signals are then displayed through an application of a computer. Our project thus encompasses two software programs: an embedded C program for signal capture and processing, and a Java application for the user interface.

Our final design will analyze high data-rate digital signals, these signals and the Mega32’s response to them will occur much faster then we could monitor manually. Therefore, it was necessary to create the user interface (Java Application on a PC) first, for use in debugging and testing the embedded C.

Java Application

The general architecture model we chose to follow is shown below:

[image: image2.png]

In our application, the signal class holds all information relevant to a digital signal monitored by our design. For our project, 2 signals are monitored. Frame1, the major class in our application, creates two signal objects, which are passed to their own corresponding signalFrames and signalProcessors.

The main frame displays waveforms corresponding to each signal, and has buttons brining up signalFrames to set aspects of each signal.

[image: image3.png][S

BEX]

Signal One.

Signal Two

The signalFrame allows the user to specify the following aspects of the signal:

[image: image4.png]Signal Name:
Signel One
®on Ooft

Signal Type
O Inverted, more the +1- 5V
Olnverted, + 35V 1o 5
O Tl loge, 0or v

Trigger.

forHigh
2 for Don'tCare
Uptos i

forLow

10100101
[Trigger occurs et Start (unchecked for end)
Signal Sampling Rate:
@ 110 bitsisecond © 4.8 Kbitstsecond
O 300 bitstsecond O 96 Kbitstsecond
O1200btsisecond O 192 Khitsisecond

O 2400btsisecond O 28.8 Khitsisecond

Name of the signals: displayed on the button next to the waveform captured from that signal.

State of the signal: If “On,” then the signal will be monitored for the trigger, and a sample captured. If “Off,” a new sample of the signal will not be captured.

Signal type: For double ended signals (+/- V), one of the top two options should be chosen, corresponding to the value of V. For TTL or logical signals (0 to 5), the bottom option should be selected.

Trigger Pattern: 1 for high, 0 for low, X for “don’t care.” Up to 8 bits may be used for the trigger pattern. If fewer then 8 are entered, Xs are added to the end of the trigger. The leftmost value in the text field is the first value looked for.

Location of the trigger: Enabling this captures a sample after the trigger, otherwise, a sample is captures immediately before the trigger’s occurrence.

Sample rate: This is the rate an incoming signal is sampled at, and should correspond the data rate of that signal.

These two frames make up the User Interface for our project.

Once a user has specified aspects of the signal, they must be communicated to the Mega32. This is accomplished via. an RS-232 serial connection. All data transferred over the serial connection is 8 data bits to 1 stop bit, with no Parity bits This connection is created, maintained and controlled by the ioModel class. This class also maintains 2 signalProcessor objects, one for each of the signals being monitored.

The signalProcessor also serves to create array for the waveform that will be displayed. Data is received by the application from the Mega32 in 4 bit pieces (nibbles), and these must be built up. The signalProcessor class receives a byte from the ioModel class and processes it. If a new captured signal is being sent, the signalProcessor clears the old one. If the wrong byte has been sent (i.e. it was for the other signal object), then it is ignored. Otherwise, using bit-wise operations, the nibble is added to the waveform.

Finally, the serialIO class creates the connection with the Mega32, and sends/receives data. ActionEvents from these classes notify the main frame (Frame1) when it should update the waveforms. A timer in ioModel checks for a timeout when waiting for a trigger, and sends the “Stop” command if necessary.

C program on Mega32

The C program on the Mega32 collects and analyzes samples through different pins on PORTA. The 16-bit timer, TIMER1, is used to control sample locations. Communication with the Java application is through the USART. The c program running on the Mega32 can be thought of as two independent loops: Edge Detection, and Signal Processing.

The first loop (Edge Detection) exists in a FOR loop in the main function class. Its primary function is to monitor the incoming signals for edges. This helps to ensure that samples are taken during valid parts of the incoming signal. The structure of this loop is:

[image: image5]
The loop is cycled through on each iteration of the FOR loop. One instance of this cycle is present for each channel being monitored.

The second loop is primarily interrupt driven. Three different interrupts are used in our design. the SIG_UART_RECIEVED vector activates an interrupt when new data is sent from the Java application. The two output compare interrupts: SIG_OUTPUT_COMPARE1A and SIG_OUTPUT_COMPARE1B are used to control the sample locations (A is used for channel 1, B for 2).

From an idle state, if data is received over the USART, the interrupt is triggered, and the data is processed according to its type. If one of the output compare interrupts is triggered. A sample is taken and stored. The last 8 samples taken are compared to the trigger, and actions are taken accordingly. See the FLOWCHARTS in Appendix C for details.

Two different time steps can be written in the output compare register. If an edge is detected, the value is set to: (current time) + (1/2 a time step). This places the next sample in approximately the middle of the next symbol. When the interrupt is triggered, the current time is in the middle of a symbol, so the next symbol’s center is a full time step away, and the value of the output compare register is set to: (current time) + (1 time step). Since an edges occur in between ideal samples, when a sample time is set by a edge, it will overwrite an existing sample location set by an interrupt. This serves as a very rudimentary “bit-sync” and helps avoid sampling at invalid locations (at transitions, etc.)

[image: image6]
Since the timer counts CPU cycles, he time step used is (rate/cpu_rate) + some “slack” time. Slack time is added so that after a long series of successive 1s or 0s, an edge is more likely to occur before an extra sample is taken.

The last 8 bits are compared to the trigger by the following process:

[Last 8 bits] & [Trigger Mask] – [Trigger Values]

this statement is 0 if the trigger has been found. The Trigger Mask sets “don’t care” bits to 0, as they are in the Trigger Values byte. Subtracting [Trigger values] compares the two. Trigger data is stored in the following format:

[Trigger Mask] = a bit is 0 if it is an “X” – don’t care, otherwise 1

[Trigger Values] = a bit is 1 if “1”, 0 if “0” and 0 if “X”.

If the trigger is found and is set to mark the start of a sample, sampling continues until the next storage address is the location of the trigger (255 more bits), then the whole sample is sent. Otherwise, the trigger marks the end of the needed sample, and the whole sample is sent.

Samples are stored in a 256 element array of unsigned chars. Each char(x) is 1 bit contains the 7 least significant bits of the previous char, along with the current sample (in the least significant bit location:

	X-1
	1110 0111

	X
	1100 111X

	X+1
	1001 11XY

	X+2
	0011 1XYZ

This system, while being inefficient with space, allows quick comparison and storage of a set of samples.:

When a new sample is taken:

1.
Shift last 8 samples left once

1111 0000 >> 1110 0000

2.
OR last 8 samples with 1 or 0, according to

1110 0000

+
0000 000X

3. Compare to the trigger

4. Store

Additionally, this allows easy access to data in 4 bit sets for sending to the Java application. 256 values are used to avoid extra commands to reset the next storage location to 0 after using location 255:

X is an unsigned char, the location of the next storage location

X = 255;

After storage, X = X + 1 = 256, but because X is only 8 bits, X = 0;

Parameters concerning the signal (Masks, values, etc) are stored in a 4 element array:

[0,0, (3 bits for rate), (trigger location, 1 for Start), (enabled), (channel #)]

[Signal Mask] – 1 in location of Pin being sampled

[Trigger Values]

[Trigger Mask]

Sampling rates
:
000 – 150 bits/sec

001 – 300 bits/sec

010 – 1200 bits/sec

011 – 2400 bits/sec

100 – 4800 bits/sec

101 – 9600 bits/sec

110 – 12.9 kbits/sec

111 – Not Used

Communication

Java to Mega32

Signal Parameter: 4 bytes, always in order, never interrupted.

[0,0,R,R R,T,E,N]
0,0 indicates type of data

R,R,R is the rate

T is 1 if the trigger is at Start

E is 1 if enabled

N is 1 for channel 2, 0 for 1

[Signal Mask]
1 in location of pin to sample

[Trigger Values]
1 = “1”, 0 = “0”, 0 = “X”

[Trigger Mask]
0 for “don’t care” bits, else 1

Start:
1 byte

[1,1,1,1 1,0,1,0]
0xFA the two leading 1s differentiate this from the first byte of a set of parameters

Stop:
1 byte

[1,1,1,1 0,1,0,1]
0xF5;

Mega32 to Java

Basic format: [C,C,N,A D,D,D,D]
C,C are the command bits:

0,0 = sample data

0,1 = no channels enabled

1,0 = Channel 1 finished

1,1 = Channel 2 finished

N is the Signal Number

A is 1 to append data, 0 to replace

If Returning the 1st nibble of data:

[0,0,0,0 D,D,D,D]
Channel 1

[0,0,1,0 D,D,D,D]
Channel 2

If Returning 2nd or higher nibble of data

[0,0,0,1 D,D,D,D]
Channel 1

[0,0,1,1 D,D,D,D]
Channel 2

If given START command, but no channels enabled, returns:

[0,1,1,1 1,1,1,1]
0x7F

If Finished sending data:

[1,0,1,1 1,1,1,1]
Channel 1 0xBF

[1,1,1,1 1,1,1,1]
Channel 2 0xFF

Time log
25/1

(13.15 – 15.15)

Selected Digiscope as project chose platform

Got Approval

Preliminary drawings of display, Schedule, Project Block Diagram

Decided to sample only 2 signals and to use the Max 32 chip, for increased memory. Display on computer through Java.

Planned meeting for next week, assigned “homework” of studying TTL vs. Serial, I/O circuits.

31/1

(13.15 – 17.00)

Designed circuits, gained preliminary approval. Choose to use MAX 232 for translating from TTL to Serial. Selected appropriate pins for signals / power. Created more sophisticated schematic of layout, including preliminary values for circuit elements.

Discussed program design: Where to analyze data (chip), How to store data (1 bit per byte or accumulation of bytes). More planning of software design.

Checked out box and Mega 32 for project. Got equipment and introduction to its use. Some Caps, Resistors, Drivers, etc.

5/2

Own work – started work on java side of project. Able to create drawing corresponding to signals.

7/2

(15.00 – 17.00)

Started soldering and construction of prototype. Selected OpAmps and other components, made list of additional equipment needs.

8/2

(15.00 – 17.00)

Got the additional equipment needed. Create OpAmp circuit on test board, check performance. Attached chip-holders for Amps, Buffers, etc.

15/2

(13.20 – 16.00)

Created Amp Circuits on board. Wired and soldered. Tested Amp/diode/buffer circuit. Noticed odd behavior, needs further analysis.

16/2

Testing, fine tuning, adding button. More work on programming Atmega32 and serial.

17/2

Testing, adding refresh button and trying to finish the JAVA and C++ codes.

18/2

More testing, updating circuit diagram and starting on report.

19/2

More changes done on circuit, taking pictures of complete board.

More work on report and programming

20/2 – 27/2

Finish Programming, Testing and Report

Appendix A – Pictures

Prototype Circuit for Serial Communictaion

[image: image7.png]

Final Design From Top:
[image: image8.png]

Final Design From Below:

[image: image9.png]— s

Appendix B – C Source Code
Mega32_2.c

#include <avr/io.h>

#include <avr/interrupt.h>

#include <avr/signal.h>

#include "get_ratesANDtimes.h"

#include "sigAnalysis.h"

#include "mega32_2.h"

//-----These arrays hold information spcific to signals

unsigned char sigSamples[2][256];//holds samples when taken

unsigned char nextSampleLoc[2];//location to store next sample collected

unsigned char trigSampleLoc[2];//holds the location of the sample holding the trigger;

unsigned char trigFound[2];

unsigned char sigByteParams[2][4];//holds data about signals [params][sigMask][tVals][tMask]

unsigned char sigEnabled[2];// sE[] is > 0 if a signal is enabled

unsigned char trigStart[2];// tS[] is > 0 if a signals trigger should occur at a start

unsigned int sigRate[2];// sR[] holds samples rates

unsigned int sigStep[2];

//-----These varialbes are used for getting and maintaing a sync with the incomming signal

unsigned char lastONE;

unsigned char currONE;

unsigned char lockONE;

unsigned char runONE;

unsigned char lastTWO;

unsigned char currTWO;

unsigned char lockTWO;

unsigned char runTWO;

//------These are used to control the processing of incomming signals

unsigned char pAS; //corresponds to the state of the FSM for acquiring parameters

unsigned char pAN;
// 1 or 0 for the signal being acquiried

unsigned char acqParams; // 1 if currently acquiring parameters, 0

unsigned char tempRcvd;

int main(void){

unsigned char dummy;

//set up for 8 data,2 stop

UBRRL = BAUD_PRESCALE; // Load lower 8-bits of the baud rate value into the low byte of the UBRR register

UBRRH = (BAUD_PRESCALE >> 8); // Load upper 8-bits of the baud rate value into the high byte of the UBRR register

UCSRB |= (1<<RXCIE)|(1 << RXEN) | (1 << TXEN); // Turn on the transmission and reception circuitry

UCSRC |= (1 << USBS)|(1 << URSEL) | (1 << UCSZ0) | (1 << UCSZ1); // Use 8-bit character sizes

TCCR1B |= (1<<CS10);//enable counter 1

sei();

while (UCSRA & (1<<RXC)) dummy = UDR;//flush input buffer

initializeParams();

//test

//populateTestArray(); //uncomment if using getTestInput()

for (;;) // Loop forever

{

if (runONE){

lastONE = currONE;

currONE = (PINA & sigByteParams[0][1]);
// mask the signal we need

if (lastONE != currONE){

//an edge has occured, re-sync the counter

syncONE();

if (!lockONE){

//this is the first lock

lockONE = 1;

//set locked

startSampling(0);

}

}

}

if (runTWO){

lastTWO = currTWO;

currTWO = (PINA & sigByteParams[1][1]);// mask the signal we need

if (lastTWO != currTWO){ //an edge has occured, re-sync the counter

syncTWO();

if (!lockTWO){
//this is the first lock

lockTWO = 1; //set locked

startSampling(1);

}

}

}

}

return 0;

}

void startItUp (){// run to start signal watching

if (!(sigEnabled[0] | sigEnabled[1])){//no signals enabled, don't start

send_byte(0x7F); //This works

return;

}

else{

if (sigEnabled[0]) runONE = 1;

if (sigEnabled[1]) runTWO = 1;

lockONE = 0;

lockTWO = 0;

}

}

SIGNAL (SIG_UART_RECV){

;

if (acqParams){//if currently acquiring parameters,

unsigned char temp = UDR;

sigByteParams[pAN][pAS] = temp;

if(pAS >= 3){ //if that was the last paramter bit

setSigSettings(sigByteParams[pAN][0], pAN);

acqParams = 0;

pAS = 0;

}

else pAS = pAS + 1;

}

else{

unsigned char temp = UDR;

if (!(temp & 192)){
//if this is the first byte of a paramter set

pAN = (temp & 1);// pAN is now the signal number

sigByteParams[pAN][0] = temp;

pAS = 1;

acqParams = 1;

}

else{// this is not a paramter byte

if ((temp & 5)){

stopSampling(0);

stopSampling(1);

}

else {

startItUp();

}

}

}

}

ISR(SIG_OUTPUT_COMPARE1A){

//interrupt to signal the time for sig1's sampling

unsigned char sreg;

unsigned int currTime;

//reset the interrupt

sreg = SREG;

//save flags

cli();

//disable interrupts

currTime = TCNT1;

//get current time

OCR1A = currTime + sigStep[0];

//add a step until next sample, write time to compare RegA

TIMSK |= (1<<OCIE1A);

//set interrupt

SREG = sreg;

//replace flags

sei();

//enable interrupts

collectSample(0);

//collect a sample

}

ISR (SIG_OUTPUT_COMPARE1B){

//interrupt to signal the time for sig2's sampling

unsigned char sreg;

unsigned int currTime;

//reset the interrupt

sreg = SREG;

//save flags

cli();

//disable interrupts

currTime = TCNT1;

//get current time

OCR1B = currTime + sigStep[1];

//add a step until next sample, write time to compare RegA

TIMSK |= (1<<OCIE1B);

//set interrupt

SREG = sreg;

//replace flags

sei();

//enable interrupts

collectSample(1);

//collect a sample

}

void collectSample(unsigned char n){//called by compare interrupt, collects a sample, looks for tirgger, etc.

unsigned char samp, last, next;

if (PINA & sigByteParams[n][1]) samp = 1;
//if the masked value of the port is 1, the sample is 1

//
if (getTestInput(n) &sigByteParams[n][1]) samp = 1; //used for testing only

else samp = 0;

next = nextSampleLoc[n];

last = next - 1;

sigSamples[n][next] = ((sigSamples[n][last] << 1) | samp); //take the previous value, shift right, append samp

if (!trigFound[n]){

//if the trigger has not already been found

if (trigCheck(sigSamples[n][next], sigByteParams[n][2], sigByteParams[n][3])){//true if trigger was just recieved

if (trigStart[n]){

//if the trigger occurs at the start of the sample

trigFound[n] = 1;

//set trigFound to true

trigSampleLoc[n] = next;

//mark this location, keep sampling

nextSampleLoc[n] = next + 1;

}

else{

//this (the trigger) is the end of the sample, done

trigSampleLoc[n] = next;

stopSampling(n);

send_whole_sig(n);

if(!n) send_byte(0xBF);

else send_byte(0xFF);

return;

}

}

else{

//the trigger was not just found, and still needs to be found

nextSampleLoc[n] = next + 1;

return;

}

}

else{

//if the trigger was already found

nextSampleLoc[n] = next + 1;

if (nextSampleLoc[n] == trigSampleLoc[n]){//this is the last value before the trigger, stop,send

stopSampling(n);

send_whole_sig(n);

if(!n) send_byte(0xBF);

else send_byte(0xFF);

return;

}

else return;

//keep sampling

}

return;

}

void setSigSettings(unsigned char byt, unsigned char sN){//extract signal settings from the 1'st byte recieved

sigEnabled[sN] = (byt & 2);

trigStart[sN] = (byt & 4);

sigRate[sN] = getRate(byt);

sigStep[sN] = getTimeStep(byt);

}

void stopSampling(unsigned char chan){ //stop sampling channel chan call after trigger found

if(chan){

runTWO = 0;

//stop looking for edges

TIMSK &= (0xf7);

//turn off interrupt flag OCIE1B

}

else{

runONE = 0;

TIMSK &= (0xef);

}

}

void startSampling(unsigned char chan){//clears markers used for sample collecting

nextSampleLoc[chan] = 0;

trigFound[chan] = 0;

trigSampleLoc[chan] = 0;

}

void send_byte(unsigned char byt){

while(!(UCSRA & (1<<UDRE)))

;

UDR = byt;

}

void send_whole_sig(unsigned char chan){

unsigned char cLoc, tLoc, curr;

//current location, trigger's location, current byte

unsigned char mSNf, mSNo;

//most significant nibbles for teh first byte being sent, and all others

unsigned char i;

tLoc = trigSampleLoc[chan];

mSNf = (chan << 5);

// so, chan = 0000 000N, mSNf = 00N0 0000

mSNo = (mSNf | 16);

// mSNo = 00N1 0000

if (trigStart[chan]){

//if this signal's trigger occurs at the start

curr = sigSamples[chan][tLoc];

send_byte(mSNf | (curr >> 4)); //so. curr = trig gerx, sending (00N0 trig)

for(i = 1;i < 64; i++){

cLoc = tLoc + 4*i;

curr = sigSamples[chan][cLoc];

send_byte(mSNo | (curr >> 4));

}

}

else{

//trigger occurs at end

curr = sigSamples[chan][tLoc + 4];

send_byte(mSNf | (0x0f & curr)); //so. curr = trig gerx, 0x0f&curr = 0000 gerx sending (00N0 gerx)

for (i = 2; i < 65 ; i++){

cLoc = tLoc + 4*i;

curr = sigSamples[chan][cLoc];

send_byte(mSNo | (0x0f & curr));

}

}

}

void syncONE(){

//call when an edge has been found

unsigned char sreg;

unsigned int tCurr, nextSample;

sreg = SREG;

//save flags

cli();

//disable interrupts

tCurr = TCNT1;

//get current time

nextSample = TCNT1 + sigStep[0]/2;
//add a half step until next sample

OCR1A = nextSample;

//write time to compare reg A

TIMSK = TIMSK |(1<<OCIE1A);

//set interrupt

lockONE = 1;

//set lockONE to true

SREG = sreg;

//replace flags

sei();

//enable interrupts

}

void syncTWO(){

//see comments above

unsigned char sreg;

unsigned int tCurr, nextSample;

sreg = SREG;

cli();

tCurr = TCNT1;

nextSample = TCNT1 + sigStep[1]/2;

OCR1B = nextSample;

TIMSK = TIMSK|(1<<OCIE1B);

lockTWO = 1;

SREG = sreg;

sei();

}

void initializeParams(){

//puts default values in paramters

sigByteParams[0][0] = 1;

//rate 150, not enabled, trigger at end = 1, trigger at start = 5

sigByteParams[1][0] = 1;

sigByteParams[0][1] = 1;

//Default to signal mask for high

sigByteParams[1][1] = 16;

sigByteParams[0][2] = 0x55;

//Default trigger values to 1010 0101

sigByteParams[1][2] = 0x55;

sigByteParams[0][3] = 0xFF;

//Default Trigger mask to all bits count

sigByteParams[1][3] = 0xFF;

setSigSettings(sigByteParams[0][0], 0);//file data into settings

setSigSettings(sigByteParams[1][0], 1);

}

sigAnalysis.c

#include "sigAnalysis.h"

unsigned int test[16];

unsigned char i,j,k,l;

unsigned char trigCheck(unsigned char samp, unsigned char tVals, unsigned char tMask){

samp = (samp & tMask);//mask off don't care bits

samp = (samp - tVals);// compare to the triggers value;

if (samp) return 0; //samp is 0 if it's the trigger, else it's not

else return 1;

}

void populateTestArray(){

i = 0;

j = 0;

test[0] = 0x0000;

test[1] = 0x1111;

test[2] = 0x2222;

test[3] = 0x3333;

test[4] = 0x4444;

test[5] = 0x6666;

test[6] = 0x7777;

test[7] = 0x8888;

test[8] = 0x9999;

test[9] = 0xbbbb;

test[10] = 0xcccc;

test[11] = 0xdddd;

test[12] = 0xeeee;

test[13] = 0xffff;

test[14] = 0x0000;

test[15] = 0x55ff; // for trig at end, will pring 0000, 1111... to 55,

//for trig at start, will print 55ff 0000 1111.....

}

unsigned char getTestInput(unsigned char chan){ //This can be called to get values from the table above

if (chan) return getTestInput2();

//for debugging purposes

else return getTestInput1();

}

unsigned char getTestInput1(){//for testing, returns a value from the table

unsigned char x;

x = (test[i] >> (15-j));

x = x & 1;

j = j + 1;

if (j == 16){

j = 0;

i = i + 1;

}

if (i == 16) i = 0;

if (x) return 0xFF;

else return 0x00;

}

unsigned char getTestInput2(){//for testing, returns a value from the table

unsigned char x;

x = (test[l] >> (15-k));

x = x & 1;

k = k + 1;

if (k == 16){

k = 0;

l = l + 1;

}

if (l == 16) l = 0;

if (x) return 0xFF;

else return 0x00;

}

get_ratesANDtimes.c

#include "get_ratesANDtimes.h"

unsigned int getRate(char c){

c = (c >> 3);

if (c == 0) return 150;

else if (c == 1) return 300;

else if (c == 2) return 1200;

else if (c == 3) return 2400;

else if (c == 4) return 4800;

else if (c == 5) return 9600;

else if (c == 6) return 12900;

else return 28800;

}

unsigned long getTimeStep(char c){

unsigned long i = (unsigned long)getRate(c);

return (unsigned long)(CPU_RATE/i) + SLACK;

}
Appendix C – Flowcharts

[image: image14.emf]

Does current value = last value

C – Checking for Trigger

C – Processing UART Received Data

[image: image15.wmf]ATmega

32

C

1

+

V

+

C

1

-

C

2

+

C

2

-

V

-

T

2

out

R

2

in

R

2

out

T

2

in

T

1

in

R

1

out

R

1

in

T

1

out

GND

VCC

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

68

µ

F

68

µ

F

68

µ

F

68

µ

F

(

RXD

)

PD

0

(

TXD

)

PD

1

105

µ

F

VCC

GND

4

,

7

k

+

5

Volts

AVCC

RS

232

To Computer

From Computer

TTL

0

to

5

10

k

10

K

10

k

+

,

-

3

.

5

to

5

10

k

10

k

20

k

+

,

-

7

to

10

-

5

10

k

10

K

10

k

10

k

10

k

20

k

+

,

-

7

to

10

+

,

-

3

.

5

to

5

Input PA

1

Input PA

0

RESET button

70

k

RESET

TTL

0

to

5

Input PA

4

Input PA

5

GND

DEBUG

Input PA

0

Input PA

1

Input PA

4

Input PA

5

Circuit Diagram

DigiScop

By

:

Matthew Cook

Aryos Muhsin

References

AVR MEGA32

Digitala Projekt Manual – Atmega32

Lund Intituted of Technology

Department of Information Technology

http://www.it.lth.se/digp/utrust.asp

MAX232 – Serial Port Driver

http://www.it.lth.se/digp/datablad/datablad_index.asp

ca3160 – Op Amps

http://www.it.lth.se/datablad/Analog/opamp/ca3160.pdf
YES

�O

YES

�O

� EMBED Visio.Drawing.11 ���

NO�O

Idle

Does current value = last value

Re-Set sampling interrupt to ½ step from now. If this is the first “lock,” start sampling.

Is this sampling channel active?

NO�O

Edge, set sample time to ½ step from here (red arrows).

INTERRUPT, set sample time to a full step from here (blue arrows)

Stop Command

Parameter Byte

UART DATA RCVD

Extract Settings from 1st byte

Receive 4th Parameter (Trig. Mask)

Receive 3rd Parameter (Trig. Values)

Receive 2nd Parameter (Sig. Mask)

Receive first Parameter

Start Sampling

Stop Sampling

IDLE

Start Command

Parameter Byte

Parameter Byte

Parameter Byte

Parameter Byte

Keep looking for Trigger

No

Trigger At Start

Yes

Is This the Trigger?

Yes

Has the trigger been found?

Send to JAVA App.

Append to last 7 samples

New Sample Taken

Yes (Trig at Start)

No

Yes

No

Sample until 255 more the trigger

No

Have 255 more samples been taken?

[image: image16.png]

[image: image17.png]LUNDS LUND

UNIVERSITET UNIVERSITY

Lunds Tekniska Hogskola

_1233924117.vsd
V0

Rf

R

Vin

_1234016748.vsd
1

