
Digital Systems, Project laboratory EDI 021

Magnus Johansson, e00mj

March 1, 2005

Abstract

Building a complete system with inputs and outputs based on a microprocessor
includes several aspects concerning hardware design, noise preventing and low-
level programming.

This project is intended to give hands-on experience in these areas. It em-
braces all phases in studying of data sheets, constructing a hardware prototype
and implementing special designed software for the prototype. A main goal has
been to show how similar embedded constructions work. By using several differ-
ent peripheral units and features, a wider knowledge of such systems and their
behaviour is shown. A graphical LCD is used as an output unit. Controlling
such a device demonstrates software issues related to low-level programming.

With the help of extensive analysis of different problems a working prototype
has been built. The functionality is demonstrated by a simple variant of the
Pong game

Contents

1 Introduction 1
1.1 Problem description . 1

2 Problem analysis 2
2.1 The microprocessor . 2
2.2 System clock . 2
2.3 Memory modules . 2
2.4 Input buttons . 3
2.5 Graphic LCD . 3
2.6 Interrupts . 3
2.7 Programmable logic . 3

3 Hardware design and logic 4
3.1 The addressing . 4
3.2 Asynchronous and synchronous mode 5
3.3 Interrupts . 5
3.4 Generating the signals . 5

4 Software design 7
4.1 Necessary assembly code . 7
4.2 Low-level drivers . 7
4.3 The LCD controlling functions 8

5 Conclusions 9

A PAL logic 11

B Circuit diagram 13

C lcdPlacePixel 14

1 Introduction

The purpose of this project is to introduce the students to hardware design
and implementations based on a microprocessor or a micro-controller. The
task should illustrate an industrial development process of a prototype. This
includes constructing, building, testing the construction and producing a written
documentation of the work, design and result.

The constructing involves analysis of the specification, choosing appropriate
components and identifying necessary signals and logic from data sheets. The
physical design and layout of the prototype must also be taken into considera-
tion. Furthermore, a program for the microprocessor should be implemented,
verified and uploaded to the model.

The goal is a fully functional and working prototype that follows the spec-
ification. By reaching this, the students should have good insight in industrial
development of microprocessor-based designs.

1.1 Problem description

The prototype construction that has been chosen to be built is any type of ap-
plication using buttons as input and a graphic LCD as output. The construction
should be based on a Motorola MC68008 microprocessor and have the ability
to save and retain data after power loss. The use of hardware interrupts should
be demonstrated.

The minimum software that should be implemented is low-level functions
for the hardware. Any other application that is implemented should make the
most use of these for accessing and using the peripheral units connected to the
microprocessor.

A simple program that demonstrates the prototype’s capability and makes
use of the low-level functions should also be implemented. In case there would
be enough time, a simple game has been proposed as a suitable program to
implement.

1

2 Problem analysis

To find out and decide what hardware should be used, it is necessary to analyse
the problem description. The hardware chosen must fulfil the least requirements
given in the specification.

2.1 The microprocessor

The microprocessor to be used, the Motorola MC68008, is already given in
the problem description. The certain model used in this project is the 48-pin
variant. It has the possibility to address a total of 1 Mb and has a eight bits
wide data-bus. The processor can be instructed to run in an asynchronous or
synchronous mode during run-time.

All peripheral units making use of the data-bus must support tri-state. This
means that they besides giving high or low logical level must be able to emulate a
high-impedance state. In the high-impedance state, the outputs neither load nor
drive the bus lines significantly. This is necessary to avoid any signal collisions,
which will give an undefined logical level.

• MC68008 Microprocessor [1]

2.2 System clock

The microprocessor has no internal system clock, which means an external one
has to be used. It is not easy to construct an external clock based on a crystal
oscillator. Doing this might introduce some problems. To simplify the proto-
type construction and avoid unnecessary problems, a oscillator chip with a well
defined square wave is used. It can easily be configured to run at 8.0000 MHz,
which is a reasonable level for the Motorola processor.

• EXO3 16.0000 MHz oscillator [2]

2.3 Memory modules

To make any use of the microprocessor some memory modules must be used.
There is a total need of three different types of memory in this construction.
One is used for storing the program code for controlling the processor. This
memory must be able to retain the data after every power loss, but has no
need to be written to in the final construction. This type of memory is called
PROM. The second memory needed is an SRAM module. The program uses
this to write and read data during run-time. The last memory module used is
of the type EEPROM. It can be written to and read from during run-time and
will remember the information after a power loss. This module will fulfil the
given requirement of that the construction must be able to save and retain data
after a power loss.

Since the program to be implemented is at the most a simple game ap-
plication, no large memory modules are needed. The CPU data-bus is eight
bits wide and the memory modules should not be more than that. With these
specifications given, the following modules were chosen.

• 27C64, 8kb, 8-bit parallel EPROM [3]

2

• 6264, 8 kb, 8-bit parallel SRAM [4]

• 28C64, 8kb, 8-bit parallel EEPROM [5]

2.4 Input buttons

Buttons used in a digital architecture should give either high or low logic level.
This is easily implemented using ordinary push buttons and pull-up resistors
between the ground and load current at the circuit board. Since the buttons
should be connected to the data-bus they must also support tri-state. This can
be achieved by passing the signals through a tri-state latch.

• 74HC373, 8-bit tri-state latch [6]

2.5 Graphic LCD

A graphic LCD that was available for use during this project consisted of one
128 x 64 dots display driven by two graphic LCD-driver chips controlling half
the display each. These require that the signals given at the data-bus are syn-
chronised with the system clock. To realise synchronous mode with the 48-pin
variant of the MC68008 microprocessor, two J-K flip-flop circuits are needed.

• BT12064B Graphic LCD [7]

• KS108B Graphic LCD-driver [8]

• 74HC73 Dual J-K Flip-Flop Reset [9]

2.6 Interrupts

A given requirement in the prototype specification is that hardware interrupts
should demonstrated. This means that certain interrupt pins at the micropro-
cessor should be issued to change the internal state of the CPU and run specific
interrupt routines in the program.

To make a simple realisation of this a 14-bit counter is used. It should
increase its value with the help of the system clock and generate an interrupt
signal when it has reached a certain value. Such a construction will guarantee
that the code written in the corresponding interrupt routine will be executed
on a strict regular basis.

• 74HC4020 14-bit counter [10]

2.7 Programmable logic

To take control of all signals, select which unit that should have access to the
data-bus and generate asynchronous handshake signals, logic is needed. This
can be realised with ordinary NAND-gate logic, but when several input sig-
nals must be used to generate multiple outputs it is a hard work. A quicker,
cheaper and much more convenient way is to implement it with PAL circuits
(Programmable Array Logic). These can emulate complex logic from a specific
programming language that is compiled and uploaded to the chip. Once it has
been programmed, it will remember its logic even after power loss.

• PALCE22V10 programmable logic [11]

3

3 Hardware design and logic

Besides choosing what components that is suitable to use, it is also necessary to
come up with a design solution that will make all the parts cooperate as they
are supposed to. This means that all signals in the prototype must be identified
and examined how they should be used.

To reduce possible errors caused by noise, there are several capacitors used
to stabilise the power supply to most chips. Many ground points are connected
with short wires to construct a type of ground plane for increasing the distur-
bance tolerance from the surrounding environment.

Another potential source to errors is input pins that are not connected but
still used. These are drawn either to ground or power supply to assign them a
correct logical level. Otherwise, there is a risk that they may oscillate between
the logical levels and cause strange and unpredicted behaviour.

3.1 The addressing

To be able to choose which peripheral unit that should be used, they all must be
assigned a unique address. When a program executed in the microprocessor calls
a certain address, the hardware should automatically set up the corresponding
chip to use the data-bus. This is done by interpreting the address given on the
address-pins of the microprocessor in a PAL chip. Once the correct chip has
been identified by the logic, a Chip Select signal is sent and the chip leaves the
high-impedance state and enters normal logical state at the data-bus.

In this prototype, the MC68008 has the ability to address up to 1 MB with
20 pins. Since the memory modules used are much smaller, they need 13 bits
only to address all their data. The button latch and the LCD need five unique
addresses in total together. This means that there are seven bits on the CPU
address-bus left to use for simple addressing logic.

Chip A15 A14 A13 A12-A0 Address
EPROM 0 0 0 x 0x0000 - 0x1FFF
SRAM 0 0 1 x 0x2000 - 0x3FFF
EEPROM 0 1 0 x 0x4000 - 0x5FFF
Button latch 0 1 1 x 0x6000
LCD1 1 0 0 x 0x8000 - 0x8001
LCD2 1 0 1 x 0xA000 - 0xA001

When an address in the table is called, it will be possible to determine which
chip that should be selected by considering the three address bits A13-A15. All
the memory modules need the twelve first address bits as input to choose correct
data. The button latch has no more data than the actual configuration of pressed
buttons. Hence, it does not need any input. The LCD uses two addresses. One
is used when the data-bus on the LCD should be used for passing instructions
and the other one is used when actual data is sent or received. This is realised by
using the first address bit, A0, as a signal to the LCD for indicating instruction
or data transfer.

The Motorola 68008 microprocessor is designed in such a way that it assumes
that the very first part of the addressing space is dedicated for special purposes.

4

There are well defined addresses where initial value of the Program Counter and
information about interrupts are placed. This means that these addresses must
be dedicated for the same purpose in the hardware design as well. It is only
the EPROM that can contain such information at system start-up. Hence, the
EPROM must be in this dedicated addressing space. The other units can be
placed arbitrary within the addressing space.

3.2 Asynchronous and synchronous mode

As earlier mentioned, the MC68008 can run in either asynchronous or syn-
chronous mode. The asynchronous cooperation with the peripheral units is
accomplished through a set of handshake signals. These are named Address
Strobe, Read/Write, Data Strobe and Data Transfer Acknowledgement (AS,
R/W, DS, DTACK). How these are used is described in the data sheet for the
microprocessor [1]. When synchronous mode is used, the data will appear on
the data-bus synchronised with the processor E signal. The LCD unit is the
only unit requiring this in this construction.

The 48-pin variant of the MC68008, which is used in this prototype, is unfor-
tunately missing a certain Valid Memory Address output signal which indicates
that there is a valid address on the address-bus and that the processor is synchro-
nised with the E signal. This signal can, however, be produced by an external
circuit. Together with the CPU input signal Valid Peripheral Address and the
Enable signal (VPA, E), the VMA will be sufficient to make the microprocessor
to work in synchronous mode.

3.3 Interrupts

The interrupt routines are called based on the interrupt level given on certain
input signals to the processor (IPL2/0, IPL1). The Function Codes output
signals (FC0-FC2) will indicate if the interrupt was accepted.

In this construction, automated vectoring interrupts are used, which is indi-
cated by using the VPA signal to the processor.

3.4 Generating the signals

Most control signals that are sent to the different peripheral units must be
generated by logic from a set of input signals and certain conditions. Chip
Select, Read/Write, handshake and synchronous/asynchronous signals are all
generated in the PAL-circuits.

The logic that selects the correct chip based on the addressing must consider
and generate appropriate handshake signals. When the LCD is issued, the
synchronised mode must be realised through logic with signals.

The DTACK signal, which tells the CPU that there is valid data on the
data-bus, is generated at the very same time as the chip select to the memory
modules. This is possible since the memories are significantlt much faster than
the processor, which is based on the system clock. The memories can easily
deliver the demanded data before the processor will read from its data-bus.

To implement all necessary logic, two PALCE22V10 must be used to get
enough output pins. Another device with more pins could have replaced them
both.

5

See appendix A to get the full logic behind the generated signals. Appendix
B shows the circuit diagram of the construction.

6

4 Software design

When software is built for an embedded design, there are some aspects that
must be taken into consideration. When the microprocessor starts it takes for
granted that certain memory addresses contains the information necessary to
start executing the code instructions properly [1]. To be able to place instruc-
tions and information on an exact given position, assembly instructions must
be used. Assembly instructions must also be used when full accesses to internal
register values are needed.

Variable initialisation on declaration is another part that must be discussed
while developing software for an embedded system. If a global variable in an
application written in C is given an initial value, it will not be placed in the
SRAM. The application C code is compiled on a developer’s workstation to
produce the machine code that later should be downloaded to the PROM. At
this point, the program can only create a virtual image of what should be written
to the SRAM. This virtual image will be lost if it is not explicitly taken care
of. This can be done by dedicate a certain area of the PROM to initial SRAM
values. This area should be copied into the SRAM at start-up of the system.
Another solution is to restructure the C code. By initiate global variables at
run-time, they will be placed in the correct SRAM. If neither of these solutions
is applied, the SRAM area will not be initialised and give an erroneous value
on access.

4.1 Necessary assembly code

In this construction is assembly code used to set initial values of important
registers, such as the Program Counter, the Stack Pointer, the Frame Pointer
and the Status Register. It is important to give these proper values. If not, the
correct program instructions will not be executed and the memory usage will
not function.

Assembly code must also be used to enable interrupts since this is done by
changing a register value. Interrupts must not be enabled until all initialisation
code is done. A good point to enable them is in the C main function.

When an interrupt occur, any ongoing execution will be interrupted and the
corresponding interrupt routine will be called. To ensure that the interrupted
execution will not fail when returned, some register values must be stored and
restored. This is achieved with the help of assembly code.

4.2 Low-level drivers

To make the application programming for the construction easier and straight-
forward, it is good to implement functions that handle the hardware related
issues. These functions should take care of addressing, timing and other special
capabilities and limitations that should not be seen or used in the application
code.

The memory modules and the buttons can easily be accessed in ordinary
manner through a simple address pointer. These system specific addresses can
be hidden in macros to remove all address literals from the application code.

The LCD is, on the other hand, a bit more complicated to control. It
is controlled by a certain interface defined in the LCD-driver data sheet [8].

7

Certain bit-patterns are translated as instructions in the LCD-driver circuit and
should definitely be taken care of by dedicated functions, or low-level drivers.

4.3 The LCD controlling functions

To help the control of the LCD some basic functions were implemented. Be-
sides the two functions void lcdOn() and void lcdOff(), which turns on and
off the display, two different functions for drawing were considered as a must:
void lcdClear() and void lcdPlacePixel(unsigned int x, unsigned int y,
unsigned int value).

lcdClear clears the display from all lit dots. lcdPlacePixel turns on or off
a certain dot in the display. This function invokes several instructions that must
be sent to and read from the LCD-driver to realise the task. Since the display
data-bus is eight bits wide (i.e. eight display dots wide), the old information
at the position must be read and the given bit changed before it is written
to the display again. This function demonstrates well how a low-level driver
hides the hardware related issues and gives a simple interface to the application
programmer.

Even though these functions should be enough to use the LCD, they are not
the optimal set. If more than one display dot should be altered at the same time,
it could be made more effectively since the data-bus is eight bits wide. If, for
instance, text should be displayed it means that several dots should be changed
after a pre-defined set of images, i.e., a font. By knowing that several of the
eight display dots should be changed in the same position, several instructions
could be removed in an optimised function. Low-level drivers should not be
unnecessarily slow if it can be avoided.

This project has a main goal of showing different aspects and problems re-
lated to constructing a system based on a microprocessor. This does not include
implementing several various and optimised low-level drivers, but showing and
discussing the technique. The lcdPlacePixel does that. See appendix C for
the code listing.

8

5 Conclusions

Developing a system based on a microprocessor is not trivial. There are many
aspects that must be considered from the very beginning. It is not possible
to construct a full prototype without knowing exactly how all the different
components behave and interact with each other. One must study the data
sheets, build up and verify the prototype one part at the time.

In this project, studying data sheets has been an essential part of the con-
structing. Several sketches has been drawn and rejected before the final solution.
When the understanding of the different components comes with the studying,
the realisation of the construct is by far easier. A project that seemed to be
fairly advanced and time-consuming turned out to be quite simple to realise and
without any serious problems.

Using a well-defined oscillator as a clock, noise reducing capacitors and many
ground pins connected as a plane, might very well have saved a lot of time. There
have not been any problems at all related to such disturbances.

Developing the software for an embedded system gives quite some new types
of challenges. Creating low-level drivers is a bit complicated from the beginning
and without any possibility of using feedback in shape of text at a screen it
does not get easier. The debugging process had to be made with the help
of the development kit, stepping through the machine code and keeping track
of register values. This is a completely new level of debugging compared to
software development on a PC.

However, the goal in the problem description has been met. The prototype is
working at its present state and the input/output functionality is demonstrated
with a simple Pong-like game.

9

References

[1] MC68008 Microprocessor
http://www.it.lth.se/datablad/Processors/68000UM.pdf

[2] EXO3 16.0000 MHz oscillator
http://www.elfa.se/pdf/74/07454002.pdf

[3] 27C64, 8kb, 8-bit parallel EPROM
http://www.it.lth.se/datablad/Memory/eprom/27c64.pdf

[4] 6264, 8 kb, 8-bit parallel SRAM
http://www.it.lth.se/datablad/Memory/sram/HM6264.pdf

[5] 28C64, 8kb, 8-bit parallel EEPROM
http://www.it.lth.se/datablad/Memory/eeprom/at28C64B.pdf

[6] 74HC373, 8-bit tri-state latch
http://www.it.lth.se/datablad/Logik/74HC/74HC373.pdf

[7] BT12064B Graphic LCD
http://www.it.lth.se/datablad/display/Batron128x64.pdf

[8] KS108B Graphic LCD-driver
http://www.it.lth.se/datablad/display/ks0108b.pdf

[9] 74HC73 Dual J-K Flip-Flop Reset
http://www.it.lth.se/datablad/Logik/74HC/74HC73.pdf

[10] 74HC4020 14-bit counter
http://www.it.lth.se/datablad/Logik/74HC/74HC4020.pdf

[11] PALCE22V10 programmable logic
http://www.it.lth.se/datablad/logik/Programmable/Palce22v10.pdf

10

A PAL logic

Short PAL logic language description:

Logic Symbol
not /
and *
or +

Title Digital Project
Pattern Memory and I/O
Author Magnus Johansson
Date 7 February 2005

device 22V10
RW 2 ’Read/Write signal from CPU
DS 3 ’Data Strobe from CPU
AS 4 ’Address Strobe from CPU
VMA 5 ’VMA signal from emulating J/K flip-flop
A13 6 ’Address bit 13 from CPU
A14 7 ’Address bit 14 from CPU
A15 8 ’Address bit 15 from CPU
GND 12
CSEPROM 14 ’Chip Select to EPROM memory
CSSRAM 15 ’Chip Select to SRAM memory
CSEEPROM 16 ’Chip Select to EEPROM memory
CSBUTTONS 17 ’Chip Select to button latch
CSLCD1 18 ’Chip Select to first LCD segment
CSLCD2 19 ’Chip Select to second LCD segment
RD 20 ’Read signal to memory and I/O
WR 21 ’Write signal to memory and I/O
DTACK 22 ’Data Transfer Acknowledge to CPU
VPADECODE 23 ’VPA Decode signal to VMA emulating J/K flip-flop
VCC 24

start
CSEPROM /= /AS * /A15 * /A14 * /A13;
CSSRAM /= /AS * /A15 * /A14 * A13;
CSEEPROM /= /AS * /A15 * A14 * /A13;
CSBUTTONS /= /AS * /A15 * A14 * A13;
CSLCD1 /= /VMA * /A13; ’The VMA signal contains the VPADECODE attributes
CSLCD2 /= /VMA * A13;
RD /= /DS * RW;
WR /= /DS * /RW;
DTACK /= /CSEPROM + /CSSRAM + /CSEEPROM + /CSBUTTONS;
VPADECODE = /AS * A15 * /A14;
end

11

Title Digital Project
Pattern Interrupt
Author Magnus Johansson
Date 7 February 2005

device 22V10
AS 2 ’Address Strobe from CPU
FC2 3 ’Function Code signal 2 from CPU
FC1 4 ’Function Code signal 1 from CPU
FC0 5 ’Function Code signal 0 from CPU
VPAJK 6 ’Generated VPA signal from VMA emulating J/K flip-flop
MSB 7 ’Most Significant Bit from counter
GND 12
IPL02 14 ’Interrupt input signal IPL0/IPL2 to CPU
VPA 15 ’VPA signal to CPU
VCC 24

start
IPL02 /= MSB;
VPA /= /VPAJK + /AS * FC2 * FC1 * FC0;
End

12

B Circuit diagram

13

C lcdPlacePixel

unsigned short int* lcd1Instr;

unsigned short int* lcd1Data;

unsigned short int* lcd2Instr;

unsigned short int* lcd2Data;

/* Use macro rather than function calls for these simple functions.

This will slightly increase the speed of the low-level drivers

thanks to the inlining result. */

#define LCDBUSYWAIT(x) while((*x & 0x80) == 0x80);

#define INITADDRESSES lcd1Instr = (unsigned short int*) 0x8000;\

lcd1Data = (unsigned short int*) 0x8001;\

lcd2Instr = (unsigned short int*) 0xa000;\

lcd2Data = (unsigned short int*) 0xa001;

void lcdPlacePixel(unsigned short int x, unsigned short int y,

unsigned short int value)

{

unsigned short int* lcdInstr = lcd1Instr;

unsigned short int* lcdData = lcd1Data;

unsigned char page, bit, pattern, newPattern;

INITADDRESSES

if(value != 0){

value = 1;

}

x %= 128;

if(x > 63){

lcdInstr = lcd2Instr;

lcdData = lcd2Data;

x -= 64;

}

y %= 64;

page = y / 8;

bit = y - page * 8;

/* choose correct page and address */

*lcdInstr = 0xb8 + page;

LCDBUSYWAIT(lcdInstr)

*lcdInstr = 0x40 + x;

/* read current pattern. needs dummy read */

LCDBUSYWAIT(lcdInstr)

pattern = *lcdData;

LCDBUSYWAIT(lcdInstr)

pattern = *lcdData;

/* the read instruction ticks the Y address as well. reset for writing */

LCDBUSYWAIT(lcdInstr)

*lcdInstr = 0x40 + x;

/* create a new pattern with the bit set to the new value */

bit = 0x1 << bit;

newPattern = (pattern & (~bit)) + bit * value;

LCDBUSYWAIT(lcdInstr)

lcdData = newPattern; / change the bit */

}

14

