
Lecture Notes for Web Security 2019
Part 2 — Apache and PHP Security, Regular Expressions

Martin Hell

1 The Apache Web Server

Apache is the most common web server in use, hosting about 60% of all web
sites in July 2012 [1]. While there are several implementations of web servers,
this widespread use of Apache is one motivation why Apache will be used as
example in this discussion about web server security. This section will not
provide a complete introduction to the Apache web server as many aspects
will be ignored. For a thorough overview, refer to http://httpd.apache.org.
Instead, this section will only discuss some selected topics related to security.

1.1 Apache Configuration

The main configuration file for Apache is usually httpd.conf. This file is used
to define ports to listen to, which directory to use as root directory for requests
to the server, which additional modules to load etc. Both global configuration
for the server and local configuration for virtual hosts and specific directories are
specified. The file is read when the server starts and any changes require a restart
of the server. The Listen directive is used to tell the server to listen for incoming
connections on a specified port. The ServerRoot directive specifies the home
directory of the server, i.e., where configuration files and log files are kept. The
root directory seen by user agents is specified using the DocumentRoot directive.
If this is defined as /var/www, then a request to www.example.com/index.html
will refer to the file /var/www/index.html.

Directives in the configuration files can be limited to only certain requests us-
ing a configuration section container. A section container can be used to match
a request to e.g., a specific directory, file or location. Directories and files are
used to match requests to specific parts of the filesystem, as seen by the server,
while location is used to match requests to resources as seen by the user agent,
or web browser. Section containers are specified using <...> ... </...>. An
example is given below.

1

ServerRoot /etc/Apache

Listen 80

DocumentRoot /var/www

<Directory /var/www/dir>

directives applicable to files in

/var/www/dir directory

</Directory>

Using <Directory ~ > PCRE regular expressions (see Section 3) can be used
to match a directory to apply the directives to.

1.1.1 Distributed Configuration

An alternative to using <Directory> in the main configuration file is to put di-
rectives in a distributed configuration file inside a directory. The default name
for these files is .htaccess but it can be changed using the AccessFileName

directive. A .htaccess file with configuration directives will apply to that di-
rectory and all subdirectories. The directives are applied, and possibly override
directives in the main configuration file, if this is permitted according to the
AllowOverride directive. An important difference between the main file and
the .htaccess file is that changes to the latter are immediately applied, without
requiring a restart of the server.

Distributed configuration with .htaccess files should only be used if there is
no possibility to use the main configuration file, e.g., if users want to change the
configuration and only the administrator has access to the main file. Anything
that can be put in a .htaccess file can also be put in the main file. Using
distributed configuration has (at least) two important disadvantages compared
to using the main configuration file. First, every time a file is requested, the
server will look for .htaccess files, both in the requested directory and its
parent directories. Looking for, and loading, these files for every request will
slow down the server. The second reason to avoid distributed configuration files
is that it will allow users to make changes to the server, which is a potential
security threat. An administrator has to be very careful determining which
configuration settings should be allowed to be overridden. Added complexity
makes more room for mistakes.

1.1.2 Configuration Order

When the configuration of a resource is determined, the sections in the configu-
ration files are read in a specific order. It is important to understand the order
in which information is read so that the configuration is as expected. The order
is given as follows.

1. The <Directory> section and .htaccess files are read simultaneously, with
.htaccess possibly overriding <Directory>. The order is given by the
length of the directory component, starting with the shortest. If there are

2

duplicates, the order is given by the order in which they appear in the
configuration file.

2. The <Directory> sections using regular expressions and <DirectoryMatch>
sections are read in the order they appear in the configuration file.

3. The <Files> and <FilesMatch> sections are read in the order they appear
in the configuration file.

4. The <Location> and <LocationMatch> sections are read in the order they
appear in the configuration file.

Subsequent information updates/overwrites previous information and after pro-
cessing all information, the resulting configuration is applied to the resource. If
virtual hosts are used, the sections inside <VirtualHost> are applied after those
outside, for each item above.

1.1.3 Server Reporting

By default, the web server sends the server HTTP response header, specifying
which version of the server is used and other information such as the version of
PHP and MySQL and which operating system is used on the server. Sending
this information to user agents is not a security problem in itself. However, if the
server software is rarely updated and patched, known security weaknesses can
be used and exploited. Giving an attacker specific information about version
numbers will greatly simplify the process of attacking the server. In Apache, the
directive ServerTokens is used to control what information is given to clients.
The default value is “full”, which provides the client with the maximum amount
of information. Other possibilities are given below together with an example of
the information sent.

ServerTokens Prod Apache
ServerTokens Major Apache/2
ServerTokens Minor Apache/2.2
ServerTokens Min Apache/2.2.14
ServerTokens OS Apache/2.2.14 (Ubuntu)
ServerTokens Full Apache/2.2.14 (Ubuntu) PHP/5.3.2-1ubuntu4.9

Still, it is important to remember that most security vulnerabilities and attacks
are not based on flaws in the actual server. Instead, it is the programs written
by users that contain the majority of vulnerabilities.

1.2 Authentication

Recall that authentication is the process of verifying the claimed identity of a
user, or more generally, the correctness of some data. Authentication with user-
name and password through Basic or Digest Access Authentication is supported
by Apache. The default is to store the username and password information in a

3

textfile, but other options, such as using a database or LDAP are also possible.
A minimal realization of Basic Access Authentication is given below.

<Directory /var/www/protected>

AuthType Basic

AuthName protected

AuthUserFile /some_path/passfile_basic

Require valid-user

</Directory>

The directory /var/www/protected is only accessible by providing username
and password. The AuthType directive specifies that Basic is used as authenti-
cation protocol and AuthName specifies the realm. The AuthUserFile directive
gives the path to the file containing the usernames and hashed passwords. If
other ways of storing passwords are used, the directive AuthBasicProvider

can be used. As this defaults to file, this directive is not needed here. The
Require directive is used for authorization (see Section 1.3) and valid-user

means that anyone that is successfully authenticated is also authorized access
to the resource. It is also possible to specify individual users or groups of users.
Adding users to the password file can be done using the htpasswd program.

Note that, since Basic Access Authentication sends passwords in plain text,
this should never be used without SSL.

Configuring Digest Access Authentication is very similar. The main differ-
ence is that AuthType Digest is used to define the protocol. An example is
given below.

<Directory /var/www/private>

AuthType Digest

AuthName private

AuthUserFile /some_path/passfile_digest

Require valid-user

</Directory>

Users are added to the password file with the program htdigest.

1.3 Authorization

Authorization is the process of determining if a given user has access to a re-
source. Authorization in Apache was significantly changed in version 2.4, dep-
recating the directives used before that. This section will cover both the old
order, allow and deny directives, as well as the newer Require directive which
is now used for all types of authorization.

1.3.1 Authorization in Apache 2.2 (and before)

The access to a resource in Apache 2.2 is controlled by Allow and Deny direc-
tives. They can be used to restrict access based on the requesting machine’s host

4

name or IP address. These can in turn be specified using either full or partial
domain names or full or partial IP addresses. An example is given below.

<Directory "/dir">

Order Deny,Allow

Allow from lth.se

Allow from 192

Deny from se

Deny from 192.168.0.0/16

</Directory>

In the example, hosts from domains ending in .lth.se or IPs beginning with 192
are allowed access while hosts from domains ending with .se and IPs beginning
with 192.168 are denied access. Note that only complete domain labels and IP
address bytes are considered. Hosts from tlth.se would not be explicitly allowed
by the lth.se directive. The Order directive defines how the access directives
are read and determines the result if one host matches both or none of allow
and deny. If Order Deny,Allow is specified, the Deny directives are read first,
possibly overwritten by subsequent Allow directives. Thus, if a host matches
both, it will be allowed. If it matches none it will also be allowed access. Using
Order Allow,Deny has the opposite effect, i.e., if a host matches both or none,
it is denied access. The default order is Deny,Allow.

1.3.2 Authorization in Apache 2.4

In Apache 2.4, the Order, Allow and Deny directives are deprecated and replaced
by the Require directive. Thus, this directive is used also for authorization
based on host name and IP address. Examples of using it are given below.

Require all granted

Require all denied

Require ip 130.235

Require host lth.se

Note that these can not be used together, they just show the syntax. The
first two directives unconditionally grants and denies access to the resource,
respectively. The third is used to require that the requester comes from the
an IP address starting with 130.235 while the last requires that the host name
is resolved to something ending with lth.se. It is also possible to negate the
directive with e.g., Require not ip 130.235. A negated directive can only fail
or return a neutral result and can thus not be used by itself to grant access to
anyone. In other words, the example can not be used to grant access to hosts
that has an IP address differing from 130.235 since it will not return success.
To do this we need additional directives. A set of Require directives can be
used together with three container directives to construct arbitrarily complex
authorization rules.

5

• <RequireAll>. This will require that no directive in the enclosed group
fails, and that at least one succeeds in order for <RequireAll> to return
success.

• <RequireAny>. At least one of the directives in the group must succeed
for the <RequireAny> to return success. If none succeeds or fails, the
result is neutral, otherwise it fails.

• <RequireNone>. If at least one of the directives in the group succeeds,
the <RequireNone> fails. Otherwise the result is neutral.

If several Require directives are used without being placed in a container, they
are implicitly understood as being inside a <RequireAny> container. Using
containers, it can now be seen how it is possible to restrict a specific range of
IP addresses.

<Directory "/dir">

<RequireAll>

Require all granted

Require not ip 130.235

</RequireAll>

</Directory>

The directives above give access to anyone that is not using 130.235 as client IP.
For 130.235 the second directive will fail, causing <RequireAll> to fail, while
for everyone else, the first directive will succeed and the second will return a
neutral result. This will satisfy the requirements for <RequireAll> to succeed.
The <RequireNone> container has the same property as negated expressions
and can also not be used alone.

The three container directives can be nested, creating very detailed autho-
rization rules. However, negated Require directives can not be used inside
<RequireAny> or inside <RequireNone> as they can have little useful impact
on the result.

2 PHP

PHP is commonly used when programming dynamic websites. It can be incor-
porated into Apache by loading the php5 module, which is the most convenient
way, but it is also possible to run PHP as a CGI script. Refer to one of the
very many online PHP tutorials for an introduction to the language and the
syntax. The PHP website http://www.php.net contains lots of information.
This section will cover parts of the PHP configuration and common security
issues that arise when programming with PHP. Some specific PHP functions
will be described as they are used in examples. As PHP gives the programmer
the power to dynamically interact with users and user input, great care must be
taken when writing the programs. PHP itself provide programmers with many
tools to secure their programs, but unless the tools are used, and used correctly,
vulnerabilities are very likely to arise.

6

2.1 PHP Configuration

The main configuration file in PHP is php.ini. However, many directives can be
overridden in the PHP files, using the ini set() function, making it somewhat
similar to the situation with .htaccess in Apache.

2.1.1 Server Reporting

Similar to the ServerTokens in Apache, PHP will by default send information
about the fact that PHP is used and which version. Again, this is not a security
problem in itself, but can be valuable information for an attacker if the server
and/or PHP is not properly updated and patched. In order to hide the fact
that PHP is used, setting ServerTokens to e.g., OS is not enough. By default,
an X-Powered-By header is added to the HTTP response, specifying the PHP
version in use. This information can be suppressed using the expose php = Off

directive. Some combinations are given below.

-- Combinations -- -- HTTP response headers --

ServerTokens Full Server: Apache/2.2.14 (Win32) PHP/5.3.2

expose_php = On X-Powered-By: PHP/5.3.2

ServerTokens Full Server: Apache/2.2.14 (Win32)

expose_php = Off

ServerTokens OS Server: Apache/2.2.14 (Win32)

expose_php = On X-Powered-By: PHP/5.3.2

ServerTokens OS Server: Apache/2.2.14 (Win32)

expose_php = Off

Setting expose php to Off will suppress the information also in the Server

header.

2.1.2 Register Globals

In PHP, unassigned variables will always default to false. Thus, if a variable is
used, e.g., in an if-statement, without having been initialized, it will always take
the value false. This fact can be used by programmers, since is not necessary to
explicitly assign false to a variable before it is used. If the configuration directive
register globals is set to On, then it is possible to assign variables through
GET, POST, Cookies, environment variables and server defined variables. Links
or forms can be constructed such that variables are assigned in the target PHP
script. While this could be useful in some circumstances, it is also a security
threat since anyone can set the variables to any value by constructing their own
requests. Consider the following PHP script.

7

function authenticate_user() {

...

}

if (authenticate_user()) {

$auth=true;

}

if ($auth) {

echo "sensitive data...";

}

A function is used to authenticate a user. It returns true if authentication is
successful, and the if-statement will set the global variable $auth to true. If the
user is not authenticated, $auth is not initialized and will default to false. In
the last step, sensitive data is returned to the client if $auth is true, i.e., if the
user was successfully authenticated. This program would work, but does not
take into account that the global variables can be set in e.g., a GET requests.
If a user submits the GET request

GET /script.php?auth=1 HTTP/1.1

then the variable will be initialized to 1 (true) and the sensitive data will be
returned in the response even if the user is not authenticated. This vulnerabil-
ity can be avoided in two ways. First, following good programming practice, all
variable should be initialized before they are used. Initializing $auth to false,
would remove the vulnerability as this would overwrite the value sent in the re-
quest. Second, PHP can be configured to disallow initializing variables through
e.g., GET, POST and cookies using the register globals = Off directive. In
fact, since PHP 4.2.0, the default value of this directive is Off so it must be
explicitly turned on if the functionality is required. Moreover, it has been dep-
recated since PHP 5.3.0 and its use is highly discouraged. In PHP 6 it will be
completely removed. Still, the potential severity of the related vulnerabilities
motivates that users are aware of this problem.

2.1.3 Error Reporting

Error reporting is very useful during the development phase. It helps the de-
veloper to locate problems when the applications are not executing as wanted.
However, once the application is in production, errors reporting should be turned
off. Errors can give valuable information to an attacker, e.g., file paths, file
names, uninitialized variables, and arguments to functions, which in the worst
case could include passwords to databases used. Error reporting is controlled
in php.ini. The directive display errors specifies if errors should be dis-
played on the screen. This defaults to On but should be turned off in production
stage. Instead, errors should be logged to a file. This can be done by setting
log errors = On and specifying the file to log to using the directive error log.

8

3 Regular Expressions

A regular expression (regex) provides a way to match a string to text. They can
be used for many purposes other than only security related. When searching
for a specific pattern in a text, regular expressions is a flexible and powerful
alternative to just searching for the literal string. When validating user input,
regular expressions can be used to check if the supplied data obey a certain set
of rules. This section provides a short introduction to regular expressions. For
a more in-depth tutorial, refer to http://www.regular-expressions.info/.

Regular expressions come in several flavours, and there are also many dif-
ferent implementations available, resulting in small differences depending on
where it is used. POSIX basic regular expressions (BRE) and POSIX extended
regular expressions (ERE) have been standardized in order to provide compati-
bility. The UNIX command grep implements both flavours, providing grep -E

for ERE, while BRE is default. The UNIX command egrep is the same as
grep -E. ERE provide more functionality than BRE and is not fully compat-
ible with BRE syntax. Still, ERE is rather limited compared to modern reg-
ular expressions variants, e.g., Perl Compatible Regular Expressions (PCRE).
PCRE is an open source library which implements the regex syntax used in Perl
5. Many modern implementations provide similar functionality as these imple-
mentations. The implementation used in the PHP preg functions are based on
PCRE. ERE support exists in PHP using the ereg functions, but is deprecated
since PHP 5.3.0. This introduction will primarily be focused on PCRE, but as
only the basic syntax is described, it is applicable to most modern flavours.

The most straightforward way of using a regex is to match with a literal
string or character. The regex abc will match the first occurrence of the se-
quence “abc” in a string, similar to a plain string search. However, this does
not take advantage of the power and flexibility in regular expressions. Special
characters, or metacharacters, are used to provide more functionality. Any spe-
cial character that should be interpreted as a literal character must be escaped
using a backslash. One special character is the dot “.”. A dot can be seen
as a wild card that matches any character, except the newline character “\n”.
Thus a.c will match the first occurrence of an “a”, followed by any character,
followed by a “c”.

Character Classes, []
Using a character class, the regular expression can define several different char-
acters and match either one of them. The character class is specified using
square brackets metacharacters, so [ab] matches the first occurrence of either
“a” or “b” in a string. A range of characters can be specified using a hyphen.
The regex [a-z] will match any lower case letter and [a-zA-Z0] matches any
upper or lower case letter or the digit “0”. The character class can be negated,
meaning that any character except those in the class will match. This is accom-
plished by placing a caret immediately after the opening square bracket, e.g.,
[^aA] will match any character except an “a” or “A”. A metacharacter inside a
character class does in general not have to be escaped, even though it is permit-

9

ted. Those that do have special meaning, i.e., ^,], and - can either be escaped
or placed where their literal meaning can not be confused by their meaning as
a metacharacter, e.g., immediately after the opening bracket. As an example,
[-a-z0-9] is equivalent to [a-z0-9-] and [a-z\-0-9]. Note though, that a
backslash must always be escaped in a character class. There are shortcuts for
some common and useful character classes. The shortcut \d matches any digit,
\s matches any whitespace and \w matches any word character, i.e., a \w is the
same as [a-zA-Z0-9]. The complements to these classes are defined by \D, \S
and \W. Thus, [a-zA-Z0-9] is the same as [^\W].

Alternation, |
Two or more regular expressions can be used for a match by combining them
into one expression. It has the same meaning as a binary OR as only one of
them has to match in order to get a match for the regex. It is similar to charac-
ter classes but instead of matching one out several character, one out of several
expressions are matched instead. The separation is done using a vertical bar.
This operator has the lowest precedence of all operators, reflecting the fact that
complete expressions are separated, not just parts of one expression. In order
to match either “one” or “two”, the regex one|two can be used.

Quantifiers, *, +, ?, {n,m}
A quantifier is used to determine how many times the preceding character, or
group of characters, should be present for a match. The following table gives
the possible ways of specifying this.

Possible Quantifiers
∗ Match 0 or more times
+ Match 1 or more times
? Match 0 or 1 time
{m} Match exactly m times
{m, } Match at least m times
{m,n} Match a minimum of m times and a maximum of n times

The regex A[bB]*C+[0-9]{1,2} would match e.g., “ABC11”, “AC2”, “AbCC3”
etc. This regex can equivalently be written as A[bB]{0,}C{1,}[0-9]{1,2}. By
default, the search engine is greedy, meaning that it will try to match as many
positions as possible if quantifiers are used. The previous expression would
match “ABC11” even though it could have chosen to match “ABC1” instead as
only one digit was required. In order to make the search lazy instead of greedy, a
? is added after the quantifier. The regex A[bB]{0,}C{1,}[0-9]{1,2}? would
then match “ABC1” instead of “ABC11”.

Anchors, ˆ, $
Anchors are used to denote the beginning and end of a string. A ^ is used
to match the beginning of a string while a $ is used to match the end. Thus,
they will not match any specific characters, but instead the space before and

10

after the first and last character respectively. This is in particular useful for
validation of user input, since the purpose is then to verify the complete input
provided by users. Using [0-9]+ is not enough to validate that user input is a
number, since it will find a match also if there is a number together with other
characters. Instead ^[0-9]+$ must be used in that case. If a string consists of
several lines, the anchors will by default represent the beginning of the first line
and the end of the last line respectively. For anchors to represent beginning and
end of each line, multi-line mode has to be used.

Word Boundary, \b
One other notable and useful sequence is \b, which represents a word boundary.
This is useful to denote the start and end of a word. It is defined as the position
where the current and previous character does not both match a word character
or both match a non-word character, i.e., one character matches \W and the
other matches \w. The regex \bbanana\b will not find a match in the string
“bananas” but it will find one in the string “banana!”. The complement \B can
be used to match a non-word boundary. The result of regex \bbanana\B would
be the opposite to that given above.

Modifiers
Modifiers can be used to tell the regex engine to interpret the regular expression
or the string it is applied to in a specific way. Common modifiers are i, m and
s. The modifier i treats the regular expression as case insensitive. Both upper
and lower case letters will match. The modifier m treats the string as multiline.
The anchors will match start of line and end of line respectively, instead of the
default where they match only start and end of string. The modifier s treats the
string as single line. This has the effect that the dot operator will also match
a newline, which is otherwise the only character it will not match. This has no
effect on anchors and should not be confused with the effect of the multiline
modifier. Another common modifier is g which is short for global. This is often
used when the regex is used for replacement in order to apply the replacement
to all matches and not just the first. In PHP, this modifier does not exist
and instead the function to use, or arguments to the functions will control this
parameter.

11

Exercises

Exercise 201 Consider the following excerpt from httpd.conf and a .htaccess

file:

-- httpd.conf --

<Directory /var/www/private>

AllowOverride all

Require all denied

</Directory>

-- .htaccess in /var/www/private --

Require host lth.se

a) Who will have access to the /var/www/private directory on the server?

b) If AllowOverride none is used instead of all, what would be the result?

c) If the container

<Directory ~ /var/www>

Require all granted

</Directory>

is added in httpd.conf, what would be the result?

d) Returning to the original httpd.conf configuration, what would be the
result of replacing the .htaccess entry with the following directives?

<RequireAny>

<RequireAll>

Require all granted

Require not host spammer.se

Require not ip 130.235

</RequireAll>

Require ip 130.235.1.1

</RequireAny>

Exercise 202 How does the AuthName directive change the communication
between the client and the server. Does the particular choice of AuthName have
any impact on security?

Exercise 203 By default, Apache sends information about server version, op-
erating system and PHP version in a HTTP response header. How can this
information be controlled by an administrator?

Exercise 204 Construct a regular expression for checking that a string is a
URL.

Exercise 205 Construct a regular expression for checking that a string is a
number divisible by 2.

12

References

[1] Netcraft. July 2012 web server survey, July 2012. Available
at: http://news.netcraft.com/archives/2012/07/03/july-2012-web-server-
survey.html.

13

