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1 Motivation for DNS

The Domain Name System (DNS) infrastructure provides several services. The
main task, however, is to map domain names to IP numbers. While IP numbers
can be used just as well as domain names, this mapping has several advantages.
First of all, names like www.example.com are much easier to remember than
a sequence of numbers, like 208.77.188.166. Another advantage is that if a
webserver is moved from one computer to another, maybe even between different
countries, the domain name can stay the same even if the IP address of the server
is changed. Before the introduction of DNS, computers used hosts files in order
to determine the IP address of a specific host. A copy of the hosts file was stored
in each computer using the network. When a new host was added, or a computer
changed IP address, the host file had to be updated on all computers. As the
number of hosts grew this approach had to be abandoned. Instead, the DNS
system was invented. DNS is a distributed database containing the mappings
between IP addresses and domain names. As a result, a computer only needs
to know the IP address of a name server and this name server can provide the
computer with all other IP addresses.

1.1 The Domain Name

A domain name is written as a series of labels, separated by dots. An example
is server.example.com. The rightmost label, com determines the top level
domain and the other labels specify subdomains. Thus, server is a subdomain
of the example.com domain and example is a subdomain of the com domain.
Another terminology used is parent domain and child domain. A domain name
can have at most 127 different labels (or levels) and each label can be at most
63 characters. However, the total number of characters allowed in a domain
name is 253. The labels are case insensitive, so example.com is the same as
EXAMPLE.COM and any mixing of uppercase and lowercase letters.

There is sometimes confusion between hostnames and domain names. Some-
times a hostname is also a domain name, but sometimes a hostname is not a
domain name and vice versa. A hostname is a name of a computer, or another
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Figure 1: The DNS hierarchy.

device, that is connected to a network. For internal networks this is usually
just a simple string, like server. A domain name does not necessarily have to
correspond to a particular device, but is instead a part of a hierarchy. It can
represent a device, but it can also represent a resource, e.g., a public key used
in DKIM. It can also be just a separator used to administer a set of comput-
ers. As an example, server.example.com is a domain name, but it is also a
hostname if it has an IP address. Just taking the first part, server, can be
the hostname on some network, but it is not an Internet hostname. The second
part, example.com is a domain name, but not necessarily a host name since it
may not correspond to a device.

A Fully Qualified Domain Name (FQDN) is a domain name that unam-
biguously specifies a domain name. This means that all labels are specified,
including the root label which is empty. Thus, a FQDN always ends with a dot.

2 Overview of DNS

The DNS structure is a hierarchical structure. The specification can be found
in RFC 1034 [10] and RFC 1035 [11]. It can be viewed as a tree with a root
node, see Figure 1. The complete tree is called the Domain Name Space, and
each node represents a domain name.

This hierarchy can be compared to a file system, which also has a root and
can be viewed as a tree. However, the domain name is written differently from
the search path, since it starts with the child nodes and ends with the parent
node. Each node in the tree represents a label in the domain name. The tree
has only one root node, but in practice there are in total 13 root nodes spread
around the world. The number of root DNS servers is more since some root



nodes correspond to many physical servers.

An authoritative DNS server is a server that is responsible for a particular
domain. This server can in turn delegate the responsibility for subdomains
to other DNS servers. These are then authoritative for this subdomain. This
delegation can continue in several steps. The part of the domain name space
that one server is authoritative for is called a zone. This hierarchy relies on the
fact that a parent knows the name of the authoritative DNS server for all its
children. The DNS server does not only store information about the mapping
between IP addresses and hostnames, called A-records. It also stores e.g., the
IP address of email servers that are responsible for accepting emails to that
domain, called MX-records.

The Internet Corporation for Assigned Numbers and Names (ICANN) is
authoritative for the root domain. ICANN delegates authority of Top Level
Domains TLDs. There are two types of TLDs, namely generic top level domains
(¢TLD) such as .com, .edu and .org and country code top level domains (c¢TLD)
such as .se, .uk, .dk and .nu. A special type of gTLDs are the sponsored top level
domains (STLDs) such as .museum and .travel. These can not be registered by
anyone, which in general is the case with gTLDs.

An authoritative name server is either a master or a slave. A master DNS
server has local access to the zone file, i.e., the information that it is authoritative
for. A slave receives the data from a master server through a zone transfer over
a network. Both are authoritative for a zone, but the configuration is done
only at the primary master. Several possible configurations exists and the best
configuration is situation dependent. It is of course possible to have several
slaves for one zone for increased redundancy. It is also possible to have several
masters, provided that the zone files are kept synchronized in some way. In that
case, one is the primary master. This is defined to be the server given in the
SOA resource record, see Section 4. One server can serve as master for one zone
and slave for another zone. For security, the master DNS server can be hidden.
By allowing only one slave to know of its existence, this slave can be updated
through zone transfers and other slaves can be updated using zone transfers
from that slave, regarding it as a master. Then, only slaves are known to the
public and security critical information on the master server is more protected.
One situation where this can be attractive is when DNSSEC is used.

The terminology primary and secondary DNS server was replaced by master
and slave in BIND 8.x, but can still be seen in the literature. Things get more
confusing due to the term primary master, which should not be confused with
primary as historically used. The term primary master was introduced in RFC
2136 [14].

A resource record is a piece of information stored on the authoritative DNS
server. More details on this will be given in Section 4.
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Figure 2: A typical DNS query. The resolver sends a recursive query and the
preferred DNS sends iterative queries.

3 Finding the IP Address of a Host

The clients that query the name servers for the resource records are called
resolvers. DNS queries uses the UDP protocol on port 53 and a query is one of
the following two types.

e Recursive - The resolver asks the DNS server to fully answer the query, or
return an error message. If the DNS server does not have the answer in
its own database, the DNS server is responsible for finding the answer by
e.g., making iterative queries.

e Iterative - The resolver only asks the DNS server for the best answer it
can get. Typically, the answer is a reference to a more appropriate DNS
server.

Usually, a resolver is implemented in the operating system, sending recursive
queries to a preferred DNS server. This preferred DNS server then sends iter-
ative queries to other DNS servers. The IP address of a specific hostname is
achieved by systematically traversing the hierarchical structure of the DNS. As
an example, assume that the webpage www.example.com is typed into a web
browser. Then the following happens, which is illustrated in Figure 2.

1. The resolver sends a recursive query for www.example. com to the preferred
DNS server. This is usually the corporate DNS server or the ISPs DNS
server.

2. Since the preferred DNS server is not authoritative for the zone to which
www.example.com belongs, it sends an iterative query asking for the do-
main www.example.com to a root name server.

3. The root name server does probably not know the answer, but it knows
the name servers authoritative for the com zone, so it will refer to those
name servers.

4. The DNS server will choose one of the referred name servers and again
send an iterative query for www.example.com to this server.



5. The com name server does probably not know the answer and will refer to
the name servers authoritative for the example.com zone.

6. The DNS server will choose one of the referred name servers and again send
an iterative query for www.example.com to the name server authoritative
for example. com.

7. This name server knows the IP address of www.example.com and will
return this address to the preferred DNS server.

8. The preferred DNS server returns the IP address of www.example.com to
the resolver.

The above example shows how the tree can be traversed in order to find
the desired information. However, if this procedure was always done, it would
render heavy traffic to and from the root servers. Instead, answers are cached
by the querying DNS server. Using the cache, the DNS server starts the it-
erative queries at the name server of the longest match in the cache. If the
hostname www.example.com has been queried before and the IP of the host
www2.example.conm is later queried by the resolver, then the DNS server will im-
mediately ask the DNS server authoritative for example.com since the address
of this DNS server is in the cache. If the resolver queries for www.server. com,
the DNS server will immediately go to the com server and continue from there.
The resolver can also have its own cache and, for efficiency, the applications
using the resolver might also implement their own DNS cache. Some imple-
mentations support negative caching as well, i.e., if a domain does not exist the
server can remember this so that the next time the same query is made the
server does not have to repeat its failed attempt.

An answer includes a time-to-live (TTL) value. This determines for how
long time an answer should stay in the cache. Normal time is about 24 hours,
but it can be set to several days if you know that your IP will not change for
that amount of time. If large websites set the TTL too short, it will result in
an increase of network traffic to root and top level domain servers.

If the response is larger than 512 bytes, it is truncated. In that case a new
query is made but instead of UDP, a TCP connection is used. In order to
support new functionality for DNS, such as DNSSEC, an extension mechanism
for DNS (EDNS) was proposed in RFC 2671 [12]. Using EDNS much larger
responses are supported also over UDP.

4 Zone Files and Resource Records

The zone file contains resource records for a zone and are located in the author-
itative name servers. The format of this file is standardized and not implemen-
tation dependent. The format is defined in RFC 1035. A resource record is a
piece of information describing a property of the zone. There are many different
types of records. Some of them are listed below.



e SOA - This is the start of authority record. It defines global parameters
for the zone, such as a serial number, the minimum TTL and the email
address to the person responsible for the zone. There can only be one
SOA record for a zone.

e A - This is a 32 bit IP address (IPv4) and is used to map hostnames to
IP addresses. It is also used in DNSBL to determine if an IP address is
listed as sending spam.

e NS - This record defines a name server for a domain. An NS record
for a domain exists in the domain zone file itself, but it must also ap-
pear in the parent zone. The com name server must store NS records for
example.com, i.e., records that points to the name servers authoritative
for the example.com domain. For redundancy and robustness, a public
domain must have at least two name servers.

e CNAME - The canonical name for an alias. Several names can be used
to point to the same IP. If users should be able to enter both example.com
and www.example.com in the browser and end up at the same place, one
can be an alias for the other.

e MX - This record points to the server that is responsible for receiving
emails to the domain.

e PTR - This is a pointer record that is used to find the hostname for an
IP address.

Other records that will be covered later are RRSIG, DNSKEY, NSEC, but there
are many more. The TXT record is e.g., used to return keys in DKIM and the
IPv6 version of A records are called AAAA records, reflecting the fact that IPv6
addresses are 128 bits instead of 32 bits.

When delegating authority for a zone, an NS record pointing to a name
server for that zone is given. If the domain name for that name server is in
the zone itself, a corresponding A record for this domain name must also be
provided. These are called glue records.

A resource record consists of several fields separated by white space. The
fields are

domain-name TTL class type data

The domain-name is the domain that the resource record applies to. If it does
not end with a dot, the zone origin is appended to the name. The TTL is the
time that the record can be cached. The class for internet is IN. The domain-
name, TTL and class can be left empty. In that case they will default to the
previous explicitly stated values. The type of the resource record is any of A,
NS, MX, TXT, etc, and the data depends on the type. For an A record, the
data is an IP address, for an NS record the data is a domain name, for an MX
record the data is a priority number and a domain name for a mail server, for



$O0RIGIN example.com. ; designates the start of this zone file in the name space
$TTL 1d ; default TTL
example.com. IN SOA ns.example.com. username.example.com. (

2007120710 ; serial number of this zone file

1d ; slave refresh (1 day)

2h ; slave retry time in case of a problem (2 hours)

4w ; slave expiration time (4 weeks)

ih ; minimum caching time in case of failed lookups (1 hour)

)
example.com. NS ns ; a nameserver for example.com

NS ns.server.se. ; a backup nameserver for example.com
example.com. MX 10 mail.example.com. ; primary mail server for example.com

MX 20 mail2.example.com. ; backup mail server for example.com
example.com. A 10.0.0.1 ; IPv4 address for example.com

A 10.0.0.2 ; Another IPv4 address for load balancing
ns A 10.0.0.3 ; IPv4 address for ns.example.com
mail A 10.0.0.4 ; IPv4 address for mail.example.com,
mail2 A 10.0.0.5 ; IPv4 address for mail2.example.com
WWW CNAME example.com. ; www.example.com is an alias for example.com

; Delegate authority of the sub.example.com domain

sub NS nsl.sub.example.com. ; Name server authoritative for the domain
NS ns2.sub.example.com. ; backup name server

nsl.sub A 10.10.0.20 ; glue record

ns2.sub A 10.10.0.20 ; glue record

Figure 3: Example of a zone file.

a TXT record the data is any text string. A semicolon marks the start of a
comment. Parentheses can be used to group data over several lines.
An example of a zone file is given in Figure 3.

5 Reverse DNS Lookup

In some cases it is useful to find the corresponding FQDN for a given IP address.
Often, this is used for troubleshooting, but it is also used in the “Received”
header of emails. Looking at the tree in Figure 1 it looks difficult to accom-
plish this since it would correspond to searching the whole tree. Instead, this
possibility is realized by defining a domain, in-addr.arpa, dedicated to this.
(IPv6 uses the domain ipv6.arpa.) The subtree of this domain corresponds to
the IP addresses, i.e., in-addr.arpa has 256 children and each of these has 256
children etc. If the domain name for IP address 1.2.3.4 is queried, the query is
made for 4.3.2.1.in-addr.arpa setting the type to PTR. Note that the bytes
in the IP address are reversed. The reason for this is that the right bytes in an
IP address are more specific than the left, the opposite of the case in a domain
name. The ISP that is in charge of a range of IP addresses is responsible for
the PTR record of that address, or for delegating this responsibility to another
DNS server. Historically IP addresses were assigned in classes. Class A, B and C
networks consists of 224, 216 and 28 IP addresses respectively, with the leftmost
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Figure 4: DNS Messages

byte(s) being fixed. This allows for easy reverse DNS lookup. Today, addresses
can be assigned in other ways, using a subnet mask to identify the number of
bits that are fixed in the assigned range. RFC 2317 [6] specifies how reverse
DNS lookup should be used for these addresses.

6 Queries and Responses

In order to fully understand the attacks on the DNS system, knowledge about
the information included in the queries and the corresponding responses is
needed. A DNS message consists of five sections, see Figure 4.

The first section is the header. This is included in all DNS messages. The
next section is the actual question followed by three sections containing the
resource records returned in a response. Each of these three sections contains
a possibly empty list of resource records. The answer section contain records
answering the question, the authority section contain records that point toward
an authoritative name server and the additional section contain other records
which are related to the query but does not immediately answer the question.

The header section starts with a 16-bit transaction ID. The ID authenti-
cates a response as the ID used in the response must be the same ID that was
used in the corresponding query. The fields denoted “misc info” in Figure 4
contain information about the message, e.g., if the message is a query or a re-
sponse, if the message has been truncated since it is to large, and if recursion
is desired/available. There is also a field indicating if the response is authori-
tative i.e., if the responding server is authoritative for the domain name in the
question section. The QDCOUNT field specifies the number of entries in the



question section. The ANCOUNT, NSCOUNT and ARCOUNT fields denote
the number of resource records returned in the answer, authority and additional
sections respectively.

The question section contain a list of entries, which represent the information
that is being asked for. Each entry consists of a domain name, which type of
resource record is being asked for (e.g., A, NS or MX), and the class of the query
(e.g., IN for Internet).

The answer, authority and additional section all share the same format,
i.e., they comnsist of a list of resource records. The information in the resource
records are the same as the information given in the zone file, see section 4.
The RDLENGTH field is not present in the zone file and specifies the number
of bytes in the RDATA field. This is needed as the RDATA field is of variable
length.

7 Attacks on DNS

The domain name system is very important to the Internet. If the root servers
would go down, Internet would practically stop working. Historically, there have
been two documented attempts to take down the root servers.

The first attempt was on October 21, 2002. A distributed denial of service
(DDOS) attack was launched targeting all 13 root servers. This attack lasted
for about one hour and some of the servers became unreachable. However, the
DNS system showed robustness against these types of attacks and the attack
did not seem to impact the end-users in any way [13].

The second attack was launched on February 6, 2007. It lasted for about 24
hours and six root servers were affected. However, also in this case the system
proved to be robust, and in particular the anycast technology used to distribute
one server over several locations proved effective [7].

The attacks that are covered in this section are DNS amplification attacks
and DNS cache poisoning attacks, but it can be noted that DNS implemen-
tations have been shown to suffer from weaknesses too, allowing e.g., buffer
overflow attacks on the server.

7.1 DNS Amplification

DNS uses the connectionless UDP protocol as the default transmission protocol
for queries and responses. It is very difficult to spoof an IP address if the TCP
protocol is used. The reason is the three-way handshake, in which the client
needs to successfully guess the sequence number to be acknowledged in the
third packet. If sequence numbers are random enough (have enough entropy),
then the client will not be able to guess it. The only way to return the correct
sequence number is to see which number is sent by the server, and that can
only be accomplished if you give the server the correct IP address. With UDP,
there is no handshake. Messages, in this case DNS queries, are sent to the DNS
server. These messages, like all IP packets, have a source IP address and this



address is used by the server when the response is sent. Thus, spoofing the IP
address in UDP is very easy.

Spoofing the source address in a DNS query is the idea behind the DNS
amplification attack. The amplification in the attack stems from the fact that
the query is included in the response so a response is usually much larger than
a query. A small query can be around 60 bytes while a response can be up
to 512 bytes. The amplification in this case is 8.5 times. This can be used to
amplify DOS attacks. To mount a DOS attack on a victim, instead of sending as
much packets as possible directly to that host, packets are sent to DNS servers
instead. By claiming that the source IP of the DNS queries is the IP address of
the victim, the DNS will send the response to the victim. This response packet
can be about 8.5 times larger than would be possible if the packets were sent to
the victim directly.

The extension mechanisms (EDNS) allow response packets to be much larger
than 512 bytes, still using UDP. It is possible for the client to tell the server
that EDNS should be used. In this case the amplification can be around 60
times instead of 8.5. Combining this with a botnet in which every zombie sends
queries to a DNS server, this attack can bring down most victims.

7.2 DNS Cache Poisoning

A DNS cache poisoning attack aims to add or change DNS records on servers
so that the wrong answer will be sent to clients. If the attacker can control
the IP addresses sent as response to queries, then traffic can be directed to an
attacker’s computer. There are many different ways to mount this attack and
some of the most powerful are based on implementation flaws in DNS servers.

One simple variant is to send false responses to queries. Assume that an
attacker is controlling the authoritative DNS for the domain attacker.com.
Other DNS servers querying IP addresses for hosts in this domain will get the
A records for these hosts. Additionally, the DNS can send other A records in
the response, e.g., an A record stating that the domain www.bank.com has some
particular IP. When the DNS server is later queried for WWW.BANK.COM, this
record will be in the cache and the IP address chosen by the attacker is returned
to the resolver. The protection against this attack is to only accept records
that belong to the domain that was actually queried. If www.attacker.com
was queried, records for other domains, such as www.bank.com, should not be
accepted.

Since UDP and not TCP is used for DNS queries and responses, the IP
address in the data packet is easy to spoof. If TCP is used, the 32-bit sequence
numbers prevent this type of spoofing, provided that the sequence numbers are
chosen randomly at the start of the session. A similar protection is used for
DNS packets, but instead of using sequence numbers, each query has a 16-bit
transaction ID. This ID is used to authenticate the DNS response. A response
will be accepted if the following holds:

1. The question section is the same in the response as in the query.
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Figure 5: A DNS cache poisoning attack.

2. The transaction ID matches the ID in the question.
3. The response comes from the same IP as the query was sent to.
4. The response comes to the same port as the query was sent from.

Consider the following attack, visualized in Figure 5. An attacker sends a recur-
sive query for www.bank.com to a DNS server. The DNS server starts sending
iterative queries to a root DNS server, the com DNS server and finally to the
bank.com DNS server. Before the reply is sent from the last server, the attacker
sends a forged response from this server, answering with an IP address of a com-
puter she controls. This is also called DNS spoofing or DNS forgery. Looking
at the requirements needed for the answer to be accepted, only the transaction
ID and the port are not immediately known to the attacker. Assuming that
the port number can easily be guessed by e.g., looking at the source code of the
DNS server and see how it is chosen, only the 16-bit transaction ID is unknown.
Thus, the reply is authorized using only a 16-bit number. Comparing this to
the 32-bit sequence number used in TCP, we can immediately conclude that the
spoofing protection of DNS replies is not as good as plain TCP connections.

Similar to the case with TCP sequence numbers, if the transaction ID is
not randomly chosen, this spoofing attack will be significantly easier. Early
versions of the BIND DNS server, the most commonly used DNS server, assigned
transaction IDs sequentially, making it very easy to predict transaction IDs and
successfully perform a DNS cache poisoning attack. Even if transaction IDs are
not sequential it is possible that the algorithm used to generate them does not
generate them randomly. This will increase the probability of correct guesses.
If the transaction ID is completely unpredictable there is still a 2716 probability
that a guess will be correct.

If the DNS server that is being attacked will send out multiple queries for the
same IP address it is possible to use the birthday paradox to improve the success
probability of the attack. By sending 300 queries and 300 replies with different
transaction ID to the DNS server, the probability that there is a collision in the
transaction IDs is very high, since v/216 = 256. For this attack to be successful,
the DNS server must treat all queries independently and send out 300 queries
for the same IP address. Moreover, no real answer is allowed to arrive from
the spoofed DNS before all queries are sent to the spoofed DNS. This might be
difficult to achieve, but the attacker can buy some time by mounting a DDOS
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Figure 6: A DNS cache poisoning attack using multiple queries and responses.

attack on the spoofed server, using a large number of computers. This attack
is visualized in Figure 6. Omne way to prevent this kind of attack is to not
allow several outstanding requests for the same domain. If the birthday, or
collision, attack is not possible, sending out about 2'¢ queries and forged replies
will still result in a successful attack. (Actually, as many replies as possible
should be sent before the real one arrives). Unfortunately for the attacker, if
the first attack attempt fails, then the correct IP address will be in the DNS
server’s cache, so it is not possible to try another attack attempt until the
cached value has expired. This time will depend on the TTL of the answer.
In 2008, an attack was published, see [4], that avoids this problem. Instead
of sending requests and replies for www.bank.com, new random subdomains of
www.bank.com was tested for each attack attempt, e.g., first a.www.bank.com
was tested, then b.www.bank.com and so on. Since these will not be found in
the cache, the DNS server authoritative for www.bank.com was queried every
time. The forged replies sent the A record for the queried domain but it also
included an A record for www.bank.com. Since they both belong to the same
domain, both records are accepted. This attack was shown to be successful in
a matter of seconds. The solution to this problem was to randomize also the
source port used in the query. (Some implementations already did this and were
not vulnerable.)

If additionally the port number used in the query is random, another 16 bits
of uncertainty are added to the authorization requirements. This will make the
attack much more difficult. If the birthday attack is possible, instead of 300
queries and replies, about 100000 will be needed. Still, even if this attack is
prevented by not allowing multiple outstanding requests, it is still possible to
perform a successful attack by testing in the order of 232 queries and replies.
This will take a long time, but the vulnerability still exists. Of course, if the
query sent to the spoofed DNS server can be sniffed, the attack will work with
only one query and reply.
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7.2.1 Consequences of DNS Cache Poisoning Attacks

DNS cache poisoning allows pharming attacks. A pharming attack is an attack
that redirects users from one webpage to another, without the victim being
aware of it. An attacker can design a webpage that looks identical to another,
e.g., www.example.com. By mounting a DNS cache poisoning attack users can be
directed to the fake webpage, thinking that it is the real one. Some consequences
of this can be:

o Identity theft - If www.example.com is a site with login functionality, users
can be tricked to submit username and password to the attacker.

e Distribution of false information - If www.example.com is a news site or a
company webpage, false information can be distributed through the fake
site.

o Distribute malware - If www . example . com contain downloadable programs,
users can download programs that are in fact some type of malware.

Another option is to mount a man-in-the-middle attack. By directing users that
want to visit www.example.com to the attackers own computer, the attacker
can then forward the data to www.example.com. This will allow the attacker
to delete, add and modify packets at her own will before forwarding them. Yet
another option is to redirect users to a page with lots of ads.

7.3 DNS Rebinding Attacks

The same-origin policy says that an HTTPHtmlRequest can not make requests
for documents with a different origin than the document itself, i.e., a document
with different protocol, domain or port. This check is implemented in the user-
agent. However, actual requests are made to IP addresses and the DNS is in
charge of the mapping between IP addresses and domains. An authoritative
DNS can claim that any IP belongs to the domain by just putting the IP in an
A record in the zone file. If one domain has several A records, the user-agent
will accept that all TP addresses belong to the same origin. These properties
are exploited in the DNS rebinding attack.

Flash Player and Java applets are common targets for this vulnerability, but
JavaScript in the browser can also be used and vulnerabilities in both Silverlight
and Adobe Acrobat can be used to perform the attack. The idea and method
of the attack is very similar in all cases. The description below focuses on the
JavaScript variant. For a more in-depth description of various aspects of DNS
rebinding attacks, see [8].

The main idea is that the attacker provides two A records for a queried
domain name. One record is for the attackers own web page, and the other
is for another domain (origin). In the original attack [5], Java applets were
targeted. Applets are only allowed to make connections to the origin that the
applet was loaded from, but by providing two A records in a DNS response, one
to download the applet from and one to connect to, it was possible to connect
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Figure 7: DNS rebinding attack.

to any computer. This problem was easily fixed by only allowing the applet to
connect to the same IP as it was loaded from.

Current attacks instead use the XMLHttpRequest object to make requests
to documents or resources with different origin. Using a very short value for the
TTL in the DNS record the steps in the attacks can be summarized as follows,
see Figure 7.

1.

A user wishes to visit www.attacker.com and queries the name server
authoritative for the domain. The attacker controls this name server and
responds with an A record pointing to the IP of www.attacker.com. The
TTL of the record is set to zero or just a few seconds.

The user downloads the web page which contains a JavaScript with an
XMLHttpRequest calling www.attacker.com. This is as expected and
complies with the same-origin policy.

As the record for www.attacker.com has expired, another query has to be
made. This time the attacker responds with another A record, pointing
to a target server.

The XMLHttpRequest is made to this new IP, and the user-agent consider
the two IPs to belong to the same origin. Instead, this IP might actually
belong to www.target.com. The response is received from www.target.com
and can be read by the JavaScript.

Information can be sent back to the attacker using e.g., an HTML form
and POST.

The attack above tricks the user-agent to think that a machine has moved
to another IP address, while in fact, the DNS is just answering with a fake
IP address immediately after it has answered with the true IP address. To
protect against this attack, DNS pinning is implemented in most browsers. The
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browser keeps the mapping between a host name and IP address in an internal
pin database, regardless of the TTL. The exact time can be up to 30 minutes
depending on the browser. Within this time, no additional DNS queries for that
host name are made.

The challenge in current DNS rebinding attacks is to circumvent the protec-
tion given by DNS pinning. Thus, the name Anti-DNS pinning is sometimes also
used in relation to these attacks and sometimes the attacks are called Anti-DNS
Pinning Rebinding Attacks. It has been shown that, in some circumstances, the
browser can be forced to drop the info in the pin database before the pinning
time has expired. In [9] it was shown that if the attacker’s web server was dis-
connected after the victim has retrieved the document with the JavaScript, then
the connection back to www.attacker.com will fail. This causes the browser to
drop the DNS pinning and make a new DNS query. Meanwhile, the attacker
changes the A record in his DNS to point to the target. Instead of disconnecting
the web server, a dynamic firewall rule can be used.

Another problem is plug-ins for browsers, e.g., Flash Player and Java. These,
and other, plug-ins use separate pin databases so it can be possible to pin the
browser to one IP address while the plug-in is pinned to another, opening up
possibilities for attacks.

7.3.1 Consequences of DNS Rebinding Attacks

Making the user-agent connect to a different server than allowed by the same-
origin policy might at first not be seen as a serious problem. After all, the
attacker can just connect to that server himself if he want access to it. However,
the important difference is that the connection made from the victim’s IP and
not the attacker’s. This allows for two important types of attacks, namely
firewall circumvention and IP hijacking.

If the target server and the victim is behind a firewall, separating e.g., an
internal network from the Internet, then the attacker has typically no access
to the server. If the requests are instead made from the victim, the attacker
can circumvent the firewall using the DNS rebinding attack. The JavaScript
can be used to crawl the entire intranet by following links and then send the
information back to the attacker. Moreover, computers on an intranet might
not be updated and patched as often as Internet-facing computers. This can
allow the attacker to exploit known vulnerabilities on computers on the internal
network. Also the victim machine itself can be subject to attacks.

In IP hijacking the attacker uses the victim’s IP to send packets to servers.
Connections to servers can also be set up, allowing the attacker to fully commu-
nicate with a server using the victim’s IP address. If an attacker hosts a website
with advertisements, this attack can be used to let all users click on an ad. Also,
the victim’s computer can be seen as a proxy and if the attacker performs illegal
actions on other computers, the victim’s IP address will be seen in logs. Sending
spam email and bypass IP based authentication are other possible consequences
of this attack.
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7.3.2 Protection Against DNS Rebinding Attacks

The protection provided by DNS pinning works in the basic scenario, but can
sometimes be bypassed. One very effective defence against this attack is to have
web servers check the host header. In HT'TP 1.1, this header is required and can
be used to separate virtual hosts residing on the same IP. In the first connection
made to www.attacker.com, that host name is used in the host header. When
the second connection is made, the user-agent thinks that it is still connecting
to www.attacker.com but using a new IP address. Thus, the same host header
is used. However, the actual host is www.target.com. This discrepancy can be
used by the web server at www.target.com and requests can be ignored if it
detects that the wrong host is used.

The fact that the host header is wrong also has the consequence that the
attack does not work if www.target.com is a virtual host on a web server.

8 DNSSEC

DNS cache poisoning is a problem that has been patched several times, but the
underlying problem remains, namely that there is no way to guarantee that the
answer comes from the claimed sender. The solution to this problem requires
cryptographic algorithms. DNS Security Extensions (DNSSEC) is an attempt
to solve the problem. It adds source authentication protection to the resource
records by using digital signatures. DNSSEC is specified in RFC 4033 [1], RFC
4034 [3] and RFC 4035 [2].

The digital signature will add integrity and origin authentication to the re-
sponse sent by the authoritative DNS server, since only the holder of the private
key can sign data. By checking the digital signature it is possible to verify that
the data received is identical to the data that is stored in the authoritative DNS
server. Note that the data is not encrypted, only signed. DNSSEC adds new
resource records to DNS, namely the DNS public key (DNSKEY), the Resource
Record Signature (RRSIG), the Next Secure (NSEC) and the Delegation Signer
(DS) records. These resource records are specified in detail in RFC 4034.

Every zone has its own private/public key pair. Each resource record set
(RRset) is digitally signed using the private key. An RRset is a set of all resource
records that have the same name, same class and same type. The public key,
together with the algorithm that is used to sign the records, is stored in the
DNSKEY record and the signature for a RRset is stored in the RRSIG record.
Every response to a DNS query will include a corresponding RRSIG record and
the DNSKEY.

8.1 Authenticated Denial of Existence

DNSSEC does not only support authentication of existing records, it also sup-
ports authenticated negative responses, i.e., responses saying that a certain
record does not exist. This will defeat denial of service attacks when the at-
tacker injects a packet stating that a domain name or other resource records
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do not exist. This is accomplished using the NSEC record type. All domain
names in a zone are sorted according to a canonical ordering. For DNS names
this is alphabetical ordering according to first the most significant label, then
the next most significant and so on. Then for each domain a record is signed
that includes this domain and the next domain, together with all record types
that exist for the domain. Using this record it can be verified that there is
not a domain name that is in between the two names in the NSEC record,
and it will also verify which records that do exist for the domain. As an
example, assume that a zone includes the domains alfa.example.com and
gamma.example.com. Then the NSEC record for alfa.example.com, will contain
alfa.example.com, gamma.example.com and all record types that exist for the
domain alfa.example.com. If DNS server sends a query for beta. example. com,
the NSEC record for alfa.example.com is returned together with a signa-
ture and the public key. This allows the querying DNS server to verify that
beta.example.com does not exist.

8.2 Verifying the Public Key

Having a resource record, the signature of the record (RRSIG) and the public
key (DNSKEY), the signature can be verified. However, nothing is achieved
if we cannot verify that the public key actually belongs to the queried DNS
server. Anyone can create a private/public key pair, sign a resource record with
the private key and send the record together with a valid signature and the
corresponding public key to a DNS server. Integrity and origin authentication
of the data can only be verified if we know that the public key belongs to the
zone. Typically this is achieved using certificates and the approach taken in
DNSSEC is similar. The public key for a zone is signed by the parent zone.
More specifically, the DS record type contains the hash of the public key and is
stored in the parent zone together with a corresponding RRsig record. This will
achieve the same functionality as that of certificates. As an example, to verify
the public key of example.com, the DNS server authoritative for the com domain
is asked for the DS record and the RRSIG corresponding to this key. Also the
public key of the com zone is queried. Using this public key the signature in the
RRsig record can be used to verify that the hash value stored in the DS record is
the hash value of the public key of example.com. By comparing this hash value
with the hash of the public key received from example.com, the authenticity of
this key is verified. Thus, as long as we trust the public key of the com zone, we
trust the public key of example.com. Similar to digital root certificates, when a
trusted public key is found, the verification is done. This trusted public key is
called a trust anchor. Ideally, this would be the public key of the root domain,
but it can in general be a public key in any subdomain.

8.3 Drawbacks

Many people consider DNSSEC to be a very important step in order to make
Internet more secure. It will no longer be possible to send forged DNS replies. It
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would make it possible to store important data in DNS servers. SPF records and
DKIM public keys are stored in DNS records and the trust in the authenticity
of these records can be increased. However, DNSSEC also has some drawbacks.

e Response messages will be significantly larger since RRSIG records must
also be sent.

e Everytime something is changed in a RRset, the server needs to recompute
the signatures.

e The zone file will grow due to all RRSIG and NSEC records.
e DNS lookups will be slower since a signature needs to be verified.

While the problem with DNS cache poisoning can be combated using the signed
responses in DNSSEC, the problem with DNS amplification attack is increased.
Since the size of the response messages are increased, the DNS servers are even
more suitable for this kind of denial of service attacks.

Exercises

Exercise 401 Would it be possible to have a centralized database for DNS in-
stead of a distributed? What would be the consequences?

Exercise 402 When signing up with an ISP we also get a DNS to use. The
resolver in the operating system then sends recursive queries to this DNS, which
in turn make iterative queries to authoritative DNS servers. Another approach
would be to let the resolver in the OS make all the iterative queries. Then we
would not need this extra DNS server provided by our ISP. What would the
consequences of such an approach be?

Exercise 403 The .se top-level domain has delegated the administration of the
lu.se domain to LU. Thus, all DNS records belonging to the 1u.se domain are
adminstered by an LU name server. If we ask a .se name server for the IP
address of www.1lu.se, it will answer with a response telling us that the IP is not
known but we can instead ask the name server lundns.lu.se. (This is an NS
record stored in the .se name server telling us who is authoritative for lu.se.)
In order to ask lundns.lu.se we need to find the IP of lundns.lu.se, but that
we cannot do since we do not have the IP to the name server authoritative for
lu.se (which is lundns.lu.se). How is this catch-22 problem solved?

Exercise 404 An advantage of DNS is that a server can change IP address
but still keep the same host name. The A record for that name in the DNS just
has to be changed so that it gives the new IP. One problem might be that the A
record has been cached by resolvers and/or applications. In that case the new
IP will not be retrieved, but the old IP will be taken from the cache. How would
you deal with this problem?
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Exercise 405 To protect against a DNS cache poisoning attack both the trans-
action ID and the port number should be random. The port number cannot be
completely random since many ports are predefined to be used for certain pro-
tocols, but let us for simplicity assume that all ports can be used by the DNS
resolver. The port and transaction ID are chosen from a uniform distribution.

a) Describe a DNS cache poisoning attack that takes advantage of the birthday
paradoz.

b) How many queries and responses must be sent according to the birthday
paradox to make the attack succeed with high probability?

Exercise 406 In February 2008, a Danish court ordered Tele2, a Danish In-
ternet Service Provider, to block all access to the popular website “The Pirate
Bay”. The website was blocked by using a DNS redirect. This means that, when
the client tries to look up the IP to the website, the DNS server owned by Tele2
(the users’ preferred DNS) responds with another name.

a) Give a few different ways to easily bypass this block.

b) It is easy to conclude that this kind of web site blocking is rather useless.
The implementation of the blocking directed users to another website with
information that the pirate bay was blocked. Compare this to the DNS
cache poisoning attack. What similarities and differences can you see?

As a side note, it was claimed that the number of visits to the pirate bay from
Denmark increased by 12% during the first few days after the block. The number
of visits from Tele2 was unchanged.

Exercise 407 In DNSSEC, the resource record RRSIG contains a signature of
one or a few resource records. Fxplain how this signature is verified.

Exercise 408 What is the purpose of the NSEC records in DNSSEC?

Exercise 409 State some advantages and drawbacks of DNSSEC.
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