Web Security

Exam checklist

Version: September 6, 2019, 11:07

- The teachers take the liberty to update this list as needed, but updates will only be applied to content relating to lectures that have not yet taken place.
- This list can be used as a tool when studying for the exam. It is a collection of topics that have been presented and discussed during the lectures. The topics are listed (roughly) in order of appearance in the lecture slides. The topics have been divided into two classes; *most important* and *less important*.
- There is no guarantee that *all* exam problems are covered by the information given in this document. Exam questions can often be based on the fact that you understand some concept rather than you just remembering it. These questions are hard to relate to a specific topic from the lectures since they may cover several lectures. However, studying the topics below will make you well prepared for these questions as well.

Several of the following topics WILL show up on the exam. Consider these to be the most important topics:

Cryptography

Exam question may assume that you know the underlying cryptography. Explicit cryptography questions may also appear on the exam, but not in abundance. Only the high profile topics are listed here.

- \Box How does the birthday paradox apply to finding collisions?
- \square How TMTO and rainbow tables work.
 - \Box How to build the tables.
 - \Box How to perform lookups.
 - \Box How to use the TMTO-curve.
 - \Box When is it better to use brute-force?
- \Box How digital signatures work in general, and for RSA.
- \Box The purpose of digital certificates.

HTTP Security, Apache Security

- \Box The basic principles of HTTP communication.
- □ HTTP methods GET, HEAD and POST. Safe and Idempotent methods.
- □ Similarities and differences regarding POST and GET.
- \square What cookies are and how and when they are sent/received.
- \Box First- vs. third party cookies. User tracking with both kinds.
- \Box Review the cookie attack terminology.
- \Box The relationship between httpd.conf and .htaccess-files.

 \Box You should be able to encode to and decode from Base64 encoding. You do not need to remember the Base64 alphabet or ASCII codes for letters and numbers.

 \Box Why is Base64 used at all, since it is just a way of expanding text?

\square HTTP Authentication:

- \Box How Basic Authentication works.
- □ How Digest Authentication (RFC2069, 1997) works. The digest formula will be given if you need it.
- □ How Digest Authentication (RFC2617, 1999) works. The digest formula will be given if you need it.
- □ What problems with RFC2069 were discovered and fixed? Which problems remain?

Web applications and PHP security

 \Box What is the purpose of the same-origin policy, and how does it work?

- □ Explain the ways in which the same-origin policy can be bypassed; proxy, iFrames, JSONP and DNS rebinding.
- \square How CORS works.
- \Box The principles of PHP.
- \Box Usage of php.ini, securing operation and limiting information.
- \square Be able to discuss pros and cons of register_globals.
- \square Be able to illustrate how failure to validate input may lead to execution of
- code or JavaScript.
- \Box How remote file inclusion works.
- \square Be able to read given and construct your own simple regular expressions.
- \Box Compare the two ways of handling sessions in PHP.
- \square Explain how session fixation attacks work.
 - \Box What are the requirements for it to work?
 - \Box What are its limitations?
 - \Box How can session fixation attacks be prevented?
- \Box What is session hijacking?
- \Box Explain how session prediction works.
 - \Box What are the requirements for it to work?
 - \Box What are its limitations?
 - \Box How can session prediction attacks be prevented?
- \Box Explain how session sniffing works
 - $\hfill\square$ What are the requirements for it to work?
 - \Box What are its limitations?
 - \Box How can session sniffing be prevented?
- \square Explain how XSS attacks work.
 - \Box What are the requirements for it to work?
- \Box What are its limitations?
 - \Box How can XSS attacks be prevented?
- \Box How does CSP work?
- \square Explain how CSRF attacks work.
 - \Box What are the requirements for it to work?
 - \Box What are its limitations?
 - \Box How can CSRF attacks be prevented?
- \square Explain how CRLF attacks and HTTP response splitting work.
- \Box Explain how an SQL injection attack works.
 - \Box What are the requirements for it to work?
 - \Box What are its limitations?
 - \Box Show a few ways of preventing SQL-injections. Best method?

DNS

- \Box The principles of DNS.
- \Box How DNS amplification works.

 \square The principles of DNS cache poisoning and how this attack can be made more efficient.

 \square Explain how a DNS cache poisoning attack can realize a man-in-the-middle attack.

 \square Explain how DNS rebinding attacks work.

 \Box What is DNS pinning and DNS anti-pinning?

 \square Explain the principles of DNSSEC. Which services are provided and at what cost?

- \Box Explain the usage of the following records in DNSSEC:
 - \Box DNSKEY
 - \Box RRSIG
 - $\hfill\square$ NSEC and NSEC3
 - \square DS
- \Box When are DNSSEC signatures calculated (and re-calculated)?
- \Box How are DNSSEC signatures and keys verified?
- □ Compare key verification functionality to usage of digital certificates.
- \Box How NSEC and zone enumeration works.
- \Box How is the zone enumeration problem avoided in NSEC3?

 \Box Name one attack type that is prevented by DNSSEC, and name one that becomes more efficient.

Email security

- \Box The principles of SMTP.
- \Box Be able to read and interpret common mail headers in general and the Received header in particular. Distinguishing forged emails from genuine ones.
- \Box Usage of MX-records.
- \square DKIM functionality.
 - \Box How are signatures created and verified?
 - \Box How and to what extent is integrity protection provided?
- \Box Explain how DNSBL can be used to fight spam. Pros and cons?
- \Box Explain how URI DNSBL works.
- □ Explain how Greylisting can be used to fight spam. Pros and cons?
- \Box Explain how Nolisting can be used to fight spam. Pros and cons?
- \Box Usage of SPF-records and their relation to MX-records.
- \Box How DMARC works.
- \square The principles of Hashcash.
- \Box In a sentence or two, describe how hybrid filters work.

Very few of the following topics will show up on the exam. These should be studied after you know everything above. The list is sorted but not divided into chapters. Consider these as less important:

 \Box Desired hash function properties:

- $\hfill\square$ Pre-image resistance,
- $\Box~2^{\rm nd}$ pre-image resistance,
- \Box Collision resistance.
- \Box URL encoding.
- \Box How to use httpd.conf to limit
 - \Box access to directories,
 - \Box information to adversaries.

 \Box Explain how statistical filtering can be used to fight spam. Pros and cons? Given Bayes law, derive the formulas for the log-likelihood ratio and interpret the threshold value 0 (zero).