
Scalar quantization with memory 

Speech and images have redundancy or memory that scalar 

quantization can not exploit. 

Scalar quantization for source with memory provides              

which is rather far from                

VQ could attain better            but usually at the cost of 

significant increasing of computational complexity. 

Another approach leading to better             and saving rather 

low computational complexity combines linear processing with 

scalar quantization. 
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Discrete-time filters 
Analog or continuous system is something that transforms an 

input signal            into an output signal          , where both 

signals are continuous functions of time.  

A discrete-time system transforms an input sequence              

into output sequence              

Any discrete-time system can be considered as a discrete filter. 

Thus predictive coding and transform coding are kinds of 

discrete filtering. 

A discrete-time system (filter)         is said to be linear if the 

following condition holds  
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where         and           are arbitrary real or complex constants.  



Discrete-time filters  

Description by means of recurrent equations 

A discrete filter of        th order is  described by the 

following linear recurrent equation  
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Discrete-time filters  

Fig.4.1 An Nth order time-invariant discrete filter 



Discrete-time filters 

The output             can be expressed via  the input   

   

)( snTy
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and  

   

)( snTh as a discrete-time convolution 
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If )( snTh has nonzero samples only for 
   

Mn ,...,0 we 

call the filter a finite response (FIR) filter. 

If  in (4.1) we set  ,0jb Nj ,...,1 then we obtain a FIR  

filter of        th order. M

Since FIR filters do not contain feedback paths they are also 

called nonrecursive filters. 
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Discrete-time filters 

Fig.4.2 An Nth order FIR filter 



Discrete-time filters 

It follows from (4.1) that the output of the FIR filter is  
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Formula (4.2) in the case of FIR filter has the form 

   .)()()()()(
0 0

 
 


M

m

M

m

sssssss mTnTxmThmTnThmTxnTy

(4.3) 

(4.4) 

Comparing (4.3) and (4.4) we obtain that  ,)( is aiTh  .,...1,0 Mi 

A filter with an infinite (im)pulse response is called IIR 

filter. In general case the recursive filter described by (4.1) 

represents IIR filter.  



Discrete-time filters 

In order to compute the pulse response of the discrete IIR 

filter it is necessary to solve the corresponding recurrent 

equation (4.1).   

Example. The first order IIR filter is described by the 

equation: ).()()( ssss TnTbynTaxnTy 
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Discrete-time filters 

Fig.4.3 



Discrete-time filters 

Description by means of z-transform 

The z-transform of a given discrete-time signal               is 

defined as 
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z-transform allows to replace recurrent equations  over 

sequences by algebraic equations over z-transforms like the 

Laplace transform allows to replace  differential equations 

by algebraic equations. 

(4.5) 



Discrete-time filters 

Properties of z-transform 

Linearity: If  

   

)(zX is the z-transform of               and  
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is z-transform of            
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Discrete convolution: If  )(zX is z-transform of )( snTx and 
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Example 

Let .

1
2

3

2

1

1
)(

12 


 zz

zX

Decompose  )(zX into sum  of simple fractions. We obtain 

1
1

11

2

1
1

1

2

1
1)1(

1
)(




 


















z

B

z

A

zz

zX
(4.6) 

Multiplying both parts of (4.6) by 
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Example 

Comparing  the obtained results with examples in the 

table we obtain that the first summand corresponds to 
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Inverse z-transform 

There is one-to-one correspondence between a discrete 

sequence and its z-transform.  

According to definition  )( snTx represents the inverse 

z-transform of ).(zX

It can be found from (4.5). First multiply  both parts by  1kz
and then take the contour integral of both parts of equation. 

The contour integral is taken along a counterclockwise 

arbitrary closed path that encloses all the finite poles of  
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Inverse z-transform 

It follows from the Cauchy theorem that if  the path of 

integration encloses the origin of coordinates then  

01 
 dzz nk

for all   k except  .nk  For  nk  it is equal to 

.21 jdzz 


Thus (4.7) reduces to  


 dzzzX

j
kTx k

s

1)(
2

1
)(



which describes the inverse z-transform. 
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Inverse z-transform 

The contour integral (4.8) can be evaluated via the 

theorem of residues. 

Theorem. Let function  )(zf be unique and analytic 

(differentiable) everywhere along the contour  

    

L and  inside it 

except     the so-called singular points  ,kz ),,...,1( Nk  lying 
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that is, the contour integral is equal to the sum of residues of 

integrand function taken in the singular points lying inside the 

path of integration, multiplied by    .2 j



Inverse z-transform 

A residue in the       th order pole       can be calculated as  m
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Example 

Continuing our example  we obtain that 
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Example 
Let us solve the equation 
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using z-transform. Using properties (linearity and delay) we obtain 
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)(zH is the transfer function of the filter, 
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Example 

By applying the inverse z-transform to             if the )(zH

integration path  encloses the pole  

   

bz  we  obtain 
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Frequency function of the discrete filter  

The complex frequency function of the discrete-time linear 

filter can be obtained by inserting               into  sTj
ez


 ).(zH

Let snTj

s enTx
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with pulse response )( snTh is 
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Frequency function of the discrete filter 

The complex frequency function can be represented in the form 
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The amplitude and the phase functions described the change in 

amplitude and phase of the discrete sinusoid introduced by the 

discrete-time linear filter. 



Frequency function of the discrete filter 
Properties of the frequency function: 

•The frequency function is a continuous function of 

frequency 

•The frequency function is a periodic function of frequency 

with period equal to the sampling frequency. 

•For discrete-time linear filters with coefficients           which 

are real numbers the amplitude function is an even function 

of frequency and the phase function is an odd function of 

frequency. 

•The frequency function can be represented via the pulse 

response as  
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Frequency function of discrete filter 

For convenience of  comparison of different frequency 

functions instead of       we consider the normalized frequency  
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Example 

The transfer function of the discrete-time linear filter of 

the 1st order has the form 
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Example 

 By normalizing frequency we obtain 
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is shown in Fig.4.4. 
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Fig.4.4 


