Scalar quantization with memory

Speech and images have redundancy or memory that scalar
quantization can not exploit.

Scalar quantization for source with memory provides R(D)
which is rather far from H (D).

\VQ could attain better R(D) but usually at the cost of
significant increasing of computational complexity.

Another approach leading to better R(D) and saving rather
low computational complexity combines linear processing with
scalar quantization.
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Discrete-time filters

Analog or continuous system iIs something that transforms an
input signal X(t) into an output signal y(t) , where both
signals are continuous functions of time.

A discrete-time system transforms an input sequence x(nT )
Into output sequence y(nT,).

Any discrete-time system can be considered as a discrete filter.

Thus predictive coding and transform coding are kinds of
discrete filtering.

A discrete-time system (filter) L is said to be linear if the
following condition holds

L(ax, (nT,) + BX, (NT,)) = el (x, (nT, )+ AL(X, (nT,)),

where «a and [ are arbitrary real or complex constants.



Discrete-time filters

Description by means of recurrent equations

A discrete filter of N th order is described by the
following Iinear recurrent equation

y(nT,) = Za x(nT, —iT )+Zb y(nT, — jT.), (4.1)
where x(nT), y(nT ) are samples of input and output signals,
a;, b, are constants which do not depend on x(nT,).

The discrete-time counterpart to Dirac’s delta function is
called Kronecker’s delta function s(nT,)

1 n=0
o(nT,) = 0, nz0

If x(nT,)=45(nT,) then y(nT,)=h(nT,), where h(nT,)

IS the discrete-time pulse response.



Discrete-time filters

y(nl)

Fig.4.1 An Nth order time-invariant discrete filter



Discrete-time filters
The output y(nT,) can be expressed via the input x(nT,)

and h(nT,) as a discrete-time convolution

y(nT,) = 3 X(MT,)h(nT, —mT,) = S h(mT,)x(nT, —mT,). (4.2)

If h(nT,) has nonzero samples only for N =0,....M we
call the filter a finite response (FIR) filter.

If in(4.1)weset b; =0, j=1..,N then we obtainaFIR
filter of M th order.

Since FIR filters do not contain feedback paths they are also
called nonrecursive filters.



Discrete-time filters

x(nT)) x(nT, -T)) x(nT, — NT.)
P Z—l T Z_-1 —p Z—l
ao a, aN
—>

Fig.4.2 An Nth order FIR filter



Discrete-time filters
It follows from (4.1) that the output of the FIR filter is
y(nT,) =a,x(nT,) +ax(nT, —T,) +...+a,, X(nT, — MT,). (4.3)

Formula (4.2) in the case of FIR filter has the form

y(nT,) = ix(st)h(nTS -mT,) = ih(st)x(nTS -mT,). (4.4)

Comparing (4.3) and (4.4) we obtain that h(iT,) =a,,i=01...M.

A filter with an infinite (im)pulse response is called IIR
filter. In general case the recursive filter described by (4.1)
represents IR filter.



Discrete-time filters

In order to compute the pulse response of the discrete IIR
filter i1t is necessary to solve the corresponding recurrent

equation (4.1).

Example. The first order IR filter is described by the
equation: | y(nT,) = ax(nT,) + by(nT, —T.).
It is evident that  y(0) = ax(0) + by(-T,),

y(T,) =b?y(-T,) + abx(0) + ax(T,).
Continuing In such a manner we obtain
y(nT,) =b™y(-T,) + Zb ax(nT, —iT,).

Setting Y(~T,) =0 and x(nT,) = §(nT )we get h(nT,) = ab".
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Discrete-time filters

Description by means of z-transform

The z-transform of a given discrete-time signal x(nT,) IS
defined as »

X(2)= Y x(nT,)z", z<E,,

N=—o0

where z s a complex variable, X (zZ) denotes a function
of Z, E, is called the existence region.

If X(nT,) is causal then one-sided z-transform is defined as

X(@)=YXnT,)z", 7¢E. (45

z-transform allows to replace recurrent equations over
sequences by algebraic equations over z-transforms like the
Laplace transform allows to replace differential equations
by algebraic equations.



Discrete-time filters

Properties of z-transform
Linearity: If X (z) is the z-transform of X(nT) and Y (z)
is z-transform of y(NT,) then|ax(nT,) +by(nT,) | has
z-transform| g X (2) +bY (2).
Discrete convolution:  If X (Z) is z-transform of X(nT,) and
Y (2) is z-transform of y(nT,) and R(z) = X (2)Y (2)
then R(Z) is z-transform of r(nT,)

r(nT,) = ix(mmy(nn -mT,) = ix(nn mT,)y(mT,)

Delay: If X (2) is z-transform of X(NT,) then z-transform of
y(nT,) =x(nT, —mT) | is Y (2) = X (2)z™"




Name of
the
sequence

Unit
impulse

Unit step

Exponent

Damped
sine

Damped
cosine

Response of
the 2nd
order filter

Complex
exponent

Sequence z-transform

Ty 1,n=0
x(nT.) = 0,n=0 X(z) =1
1
x(nTS)z{;’ :ig X(z) = e
—-anT, A
KT =Ae XD =1

_ z e ™" sin @,
1-z72e*" cos T, +e 2777

x(nT,) =e "% sin(wnT,) X(2)

—anT. X (Z) _ 1_ e_aTS Z_l COS Q)TS
x(nT,) =e ™" cos(anT,) X (2) = T = oT. +e 717

X(T) = (4™ = 75™), W S .
’ ‘ _1—2_1a—z‘2b_ — 7 —
v, =al2+ |2 1b (Z-7)(z-7,)
' V4 .
eja)nTs’ n>0 X(Z) _ ;
X(nT,)= ~ _joT, o1
(") {0, n<0 1-e""z



Example

A |
2 2
Decompose X (Z) intosum of simple fractions. We obtain
1 A B
X(2) =

=+
(1—z-1)(1—;z-1j 1-77 1—22—1 (4.6)

_ 1__
Multiplying both parts of (4.6) by (1—2 1)(1—5 Z 1) we get

1= A(l—%zlj+ Bdl-z1).

Equating coefficients of like powers of z we obtain
[ A+B=1 1 )

-1

< and X(2)= =——1-
A j 1-z7 1

T2 570 g

N | |-~



Example

Comparing the obtained results with examples in the
table we obtain that the first summand corresponds to

2, NnN>0
X =10 h <o

n

and the second summand correspondsto  x(nT,) =-2"".

. ( I il >
Thus we obtain X(NT.) = 2—-2", n=>0
0, n<0

.



Inverse z-transform

There Is one-to-one correspondence between a discrete
sequence and its z-transform.

According to definition X(nT,) represents the inverse
z-transform of X (2).

It can be found from (4.5). First multiply both parts by 7
and then take the contour integral of both parts of equation.

The contour integral is taken along a counterclockwise
arbitrary closed path that encloses all the finite poles of

X (z)z** and lies entirely in E,.

§X (2)z"'dz = ix(nTs)§ 2“"'dz (4.7)



Inverse z-transform

It follows from the Cauchy theorem that if the path of
Integration encloses the origin of coordinates then

§ 2“"dz=0

forall k except k=n. For k=n itisequal to
§z‘1dz = 27j.

Thus (4.7) reduces to

X(KT ) = % X@2dz g

which describes the inverse z-transform.



Inverse z-transform

The contour integral (4.8) can be evaluated via the
theorem of residues.

Theorem. Let function f(z) be unique and analytic
(differentiable) everywhere along the contour L and inside it
except the so-called singular points  Zy, (k =1....,N), lying
inside L. Then

§ f(z)dz = ZdiRes[f (2),z.]

(L)

that Is, the contour integral is equal to the sum of residues of
Integrand function taken in the singular points lying inside the
path of integration, multiplied by 2.



Inverse z-transform

Aresidue inthe M th order pole z, can be calculated as

1 . dm_1
_1)|z z dz" m-1

Res| f (2),z,] =

[(2-2,)"1(2)]

If function f (z) represents a ratio of two finite functions
f (z) =9(z)/h(z)and it being known that h(z) has
zero of the 1storderin Z = a and that g(a) =0 then

the residue in Z = A can be computed as

9(a)
Res| f (2),a 4.9
[F@.al={52 (4.9)
If X(2)z" " has K finite polesat z=a;,j =12 . K then

x(nT,) = iRes[X (2)2" %, z= ai]




Example

Continuing our example we obtain that

1 ¢2z2"'dz 1 § 2" dz

X(nT.) = — .
(nT.) 27zj§1—z‘1 271 1_12_1
2

Using (4.9) we compute

1 271 2

71

Thus | X(nT,)=2-— 27",

2—n



Example
Let us solve the equation

y(nTs) — ax(nTs) T by(nTs _Ts)'

using z-transform. Using properties (linearity and delay) we obtain
Y(2) = bY(z)z‘1 +aX(2),
a
H(z)= X (z) T1-bz
where H (z) is the transfer function of the filter, X (z) and

Y () are the z-transforms of the input and output. H(z) is the
z-transform of h(nT,) H(z)=) h(nT,)z™"

Since Y (z) = X(z)H(2) thenif x(nT,)=45(nT;), X(z) =1.

This yields Y(z)=H(z) = 1_22—1 _ Zazb.




Example

By applying the inverse z-transform to H(z) if the

integration path encloses the pole z =b we obtain

y(nT,) =ab".




Frequency function of the discrete filter

The complex frequency function of the discrete-time linear
filter can be obtained by inserting z = e'“"s into H (2).
Let x(nT,)= e!"" then the corresponding output of the filter

with pulse response  h(nT,) is
Y(T,) = > h(mT,)X(AT, - mT,) = 3 h(mT, el —
m=0
— @lonTs Zh(mT )e jeomT,
When n —> oo y(nT,) =e!"" Zh(mT Je 1o — glonTs (g ey

where H (&) =>"" Oh(mT )e oM | is the complex

frequency function of the discrete-time linear filter.




Frequency function of the discrete filter

The complex frequency function can be represented in the form
H (ej“’TS ) = A(a))e””(“’) = Re(H (ej“’TS )+ J Im(H (ej”TS ),

where

A@) = IRe(H (e ) + Im(H (/"))

IS the amplitude function and

¢(w) = arctan

Im(H (e’”"™*))
Re(H (e'™))

IS the phase function.

If X(nT,) =sin(nwT,) then Y(NT,) = A(w)sin(nhaT, + p(w)).

The amplitude and the phase functions described the change in
amplitude and phase of the discrete sinusoid introduced by the
discrete-time linear filter.



Frequency function of the discrete filter
Properties of the frequency function:

*The frequency function is a continuous function of
frequency

*The frequency function is a periodic function of frequency
with period equal to the sampling frequency.

*For discrete-time linear filters with coefficients a,,b. which
are real numbers the amplitude function is an even function
of frequency and the phase function is an odd function of
frequency.

*The frequency function can be represented via the pulse

response as 3 3
H(e'™)=>"h(nT,)e "™ = > h(nT,)e 1*"™ = "h(nT,)(cos(2anfT,) — jsin(2znfT,)).
n=0 n=0 n=0



Frequency function of discrete filter

For convenience of comparison of different frequency
functions instead of @ we consider the normalized frequency

a=wlwo,, where o, =27/T, is the sampling frequency
In radians. Then we obtain

H(e') = S h(nT,)e ™ = 3 h(nT, )(cos(2ma) - jsin(2mna)).



Example

The transfer function of the discrete-time linear filter of
the 1st order has the form

a
H(z) = .
(2) 1-bz™
- - joT ; -
By inserting Z =€'""* e obtain the frequency function
a a

H(e"") = ———7= ibsi |
1-be™ s 1-Dbcos(wT,)+ jbsin(awT,)

The amplitude function is
Alw) = a a

J—bcos(@T,))? +b?sin’(aT.) 1 2bcos(wT,)+b?

The phase function bsin(awT,)
o(w) = —arctan >,
1-bcos(wT,)




Example

By normalizing frequency we obtain
a

J1-2bcos(27a) +b?

Ala) =

bsin(27x)

o) = —arctan .
P(a) 1—bcos(27x)

The amplitude function A(xx) for a=1, b=05

IS shown in Fig.4.4.
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