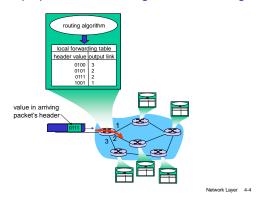
Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- * on reving side, delivers segments to transport layer
- network layer in every host, router
- router examines header in all IP datagrams passing through it

Network Layer 4-2

Two Key Network-Layer Functions

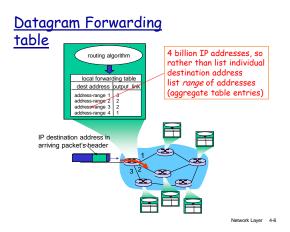

- * forwarding: move packets from router's input to appropriate router output
- * routing: determine route taken by packets from source to dest.
 - routing algorithms

analogy:

- routing: process of planning trip from source to dest
- * forwarding: process of getting through single interchange

Network Layer 4-3

Interplay between routing and forwarding



Datagram networks

- no call setup at network layer
- routers: no state about end-to-end connections no network-level concept of "connection"
- * packets forwarded using destination host address packets between same source-dest pair may take different paths

Longest prefix matching

Longest prefix matching _

when looking for forwarding table entry for given destination address, use longest address prefix that matches destination address.

Destination Address Range				Link interface
11001000	00010111	00010***	******	0
11001000	00010111	00011000	******	1
11001000	00010111	00011***	* * * * * * * * *	2
otherwise				3

Examples:

DA: 11001000 00010111 00010110 10100001 DA: 11001000 00010111 00011000 10101010

Which interface? Which interface? Network Layer 4-8

1

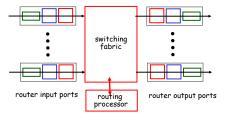
Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router?
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing ICMP
 - IPv6

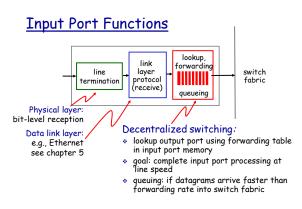
- Link state Distance Vector
- Hierarchical routing

4.5 Routing algorithms

- 4.6 Routing in the
 - Internet
 - RIP
 - OSPF
 - BGP

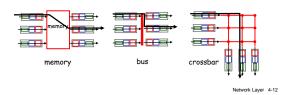

- 4.7 Broadcast and
- multicast routing

Network Layer 4-9


Router Architecture Overview

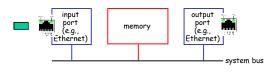
two key router functions:

- run routing algorithms/protocol (RIP, OSPF, BGP)
- * forwarding datagrams from incoming to outgoing link


Network Layer 4-10

Network Layer 4-11

Switching fabrics


- * transfer packet from input buffer to output buffer
- * switching rate: rate at which packets can be transfer from inputs to outputs
 - N inputs: switching rate N times line rate desirable
- * three types of switching fabrics

Switching Via Memory

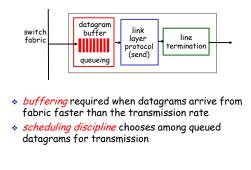
First generation routers:

- * traditional computers with switching under direct control of CPU
- *packet copied to system's memory
- speed limited by memory bandwidth (2 bus crossings per datagram)

bus

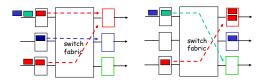
- datagram from input port memory to output port memory via a shared bus
- bus contention: switching speed limited by bus bandwidth

Network Layer 4-14


Network Layer 4-13

Switching Via An Interconnection Network

- * overcome bus bandwidth limitations
- advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.

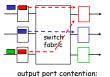

Output Ports

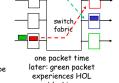
Network Layer 4-15

Network Layer 4-16

Output port queueing

* buffering when arrival rate exceeds output line speed


Network Layer 4-17


Input Port Queuing

* fabric slower than input ports combined -> queueing may occur at input queues

• queueing delay and loss due to input buffer overflow!

* Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

only one red datagram can be transferred lower red packet is blocked

blocking Network Layer 4-19