
1

Transport Layer 3-4

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

 full duplex data:
 bi-directional data flow

in same connection

 MSS: maximum segment
size

 connection-oriented:
 handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

 flow controlled:
 sender will not

overwhelm receiver

 point-to-point:
 one sender, one receiver

 reliable, in-order byte
steam:
 no “message boundaries”

 pipelined:
 TCP congestion and flow

control set window size

 send & receive buffers

socket

door

TCP

send buffer

TCP

receive buffer

socket

door

segment

application

writes data
application

reads data

Transport Layer 3-5

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

Receive window

Urg data pnterchecksum

FSRPAU
head
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-6

TCP seq. #’s and ACKs
Seq. #’s:

 byte stream
“number” of first
byte in segment’s
data

ACKs:

 seq # of next byte
expected from
other side

 cumulative ACK

Q: how receiver handles
out-of-order segments

 A: TCP spec doesn’t
say, - up to
implementor

Host A Host B

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

Transport Layer 3-7

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

 longer than RTT
 but RTT varies

 too short:
premature timeout

 unnecessary
retransmissions

 too long: slow
reaction to segment
loss

Q: how to estimate RTT?
 SampleRTT: measured time from

segment transmission until ACK
receipt

 SampleRTT will vary, want
estimated RTT “smoother”

 average several recent
measurements

Transport Layer 3-8

TCP Round Trip Time and Timeout

EstimatedRTT = (1-)*EstimatedRTT + *SampleRTT

 Exponential weighted moving average

 influence of past sample decreases exponentially fast

 typical value: = 0.125

Transport Layer 3-9

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

2

Transport Layer 3-10

TCP Round Trip Time and Timeout

Setting the timeout
 EstimatedRTT plus “safety margin”

 large variation in EstimatedRTT -> larger safety margin

 first estimate of how much SampleRTT deviates from
EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-)*DevRTT +

*|SampleRTT-EstimatedRTT|

(typically, = 0.25)

Then set timeout interval:

Transport Layer 3-11

TCP reliable data transfer

 TCP creates reliable
service on top of IP’s
unreliable service

 pipelined segments

 cumulative acks

 TCP uses single
retransmission timer

 retransmissions are
triggered by:
 timeout events

 duplicate acks

Transport Layer 3-12

TCP sender events:
data rcvd from app:

 Create segment with
seq #

 seq # is byte-stream
number of first data
byte in segment

 start timer if not
already running (think
of timer as for oldest
unacked segment)

timeout:

 retransmit segment
that caused timeout

 restart timer

Ack rcvd:

 If acknowledges
previously unacked
segments
 update what is known to

be acked

 start timer if there are
outstanding segments

Transport Layer 3-13

TCP: retransmission scenarios

Host A

time
premature timeout

Host B

S
eq

=9
2

 t
im

eo
ut

Host A

loss

ti
m

e
ou

t

lost ACK scenario

Host B

X

time
S

eq
=9

2
 t

im
eo

ut

SendBase
= 100

SendBase
= 120

SendBase
= 120

SendBase
= 100

Transport Layer 3-14

TCP retransmission scenarios (more)

Host A

loss

ti
m

e
ou

t

Cumulative ACK scenario

Host B

X

time

SendBase
= 120

Transport Layer 3-16

Fast Retransmit

 time-out period often
relatively long:
 long delay before

resending lost packet

 detect lost segments
via duplicate ACKs.
 sender often sends

many segments back-to-
back

 if segment is lost, there
will likely be many
duplicate ACKs.

 if sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:
 fast retransmit: resend

segment before timer
expires

3

Transport Layer 3-17

Host A Host B

time

X

Resending a segment after triple duplicate ACK
Transport Layer 3-18

TCP Flow Control

 receive side of TCP
connection has a
receive buffer:

 speed-matching
service: matching the
send rate to the
receiving app’s drain
rate

 app process may be
slow at reading from
buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control

Transport Layer 3-19

TCP Connection Management

Three way handshake:

Step 1: client host sends TCP SYN segment to server

 specifies initial seq #

 no data

Step 2: server host receives SYN, replies with SYNACK
segment

 server allocates buffers

 specifies server initial seq. #

Step 3: client receives SYNACK, replies with ACK segment,
which may contain data

Transport Layer 3-20

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

client server

close

close

closed
ti

m
e
d
 w

ai
t

Transport Layer 3-21

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

 Enters “timed wait” -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

.

client server

closing

closing

closed

ti
m

e
d
 w

ai
t

closed

Transport Layer 3-22

Principles of Congestion Control

Congestion:
 informally: “too many sources sending too much

data too fast for network to handle”

 different from flow control

 manifestations:

 lost packets (buffer overflow at routers)

 long delays (queueing in router buffers)

4

Transport Layer 3-23

Approaches towards congestion control

end-end congestion
control:

 no explicit feedback from
network

 congestion inferred from
end-system observed loss,
delay

 approach taken by TCP

network-assisted
congestion control:

 routers provide feedback
to end systems

Two broad approaches towards congestion control:

Transport Layer 3-24

TCP congestion control: additive increase,
multiplicative decrease

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion

window

 approach: increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

 additive increase: increase cwnd by 1 MSS every
RTT until loss detected

 multiplicative decrease: cut cwnd in half after
loss

time

c
w
n
d

:
c
o
n
g
e
s
ti
o
n
 w

in
d
o
w

 s
iz

e

saw tooth
behavior: probing

for bandwidth

Transport Layer 3-25

TCP Congestion Control: details

 sender limits transmission:
LastByteSent-LastByteAcked

 cwnd

 roughly,

 cwnd is dynamic, function of
perceived network congestion

How does sender
discover congestion?

 loss event = timeout or
3 duplicate acks

 TCP sender reduces
rate (cwnd) after loss
event

rate =
cwnd
RTT

Bytes/sec

Transport Layer 3-26

TCP Slow Start

 when connection
begins, increase rate
exponentially until
first loss event:
 initially cwnd = 1 MSS

 double cwnd every RTT

 done by incrementing
cwnd for every ACK
received

Host A

R
T

T

Host B

time

Transport Layer 3-27

Refinement: inferring loss

 after 3 dup ACKs:

 cwnd is cut in half

 window then grows
linearly

 but after timeout event:

 cwnd instead set to 1
MSS;

 window then grows
exponentially

 to a threshold, then
grows linearly

 3 dup ACKs indicates
network capable of
delivering some segments
 timeout indicates a
“more alarming”
congestion scenario

Philosophy:

