TCP: Overview

% point-to-point:

" one sender‘, one receiver
+ reliable, in-order byte

steam:

= no “message boundaries”
+ pipelined:

= TCP congestion and flow

control set window size

+ send & receive buffers

TCP.
receive buffer
O

RFCs: 793, 1122, 1323, 2018, 2581

+ full duplex data:
= bi-directional data flow
in same connection
= MSS: maximum segment
size
+ connection-oriented:
= handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

% flow controlled:

wsa = sender will not

overwhelm receiver

Transport Layer

®
S

TCP seq. #'s and ACKs

Seq. #'s: @ Host A Host B @

= byte stream

“number"” of first ;i":s
byte in segment’s o
data

ACKs:

= seq # of next byte
expected from

Segs.
oq=4,
%‘
host ACKs

receipt of

TCP segment structure

32 bits
URG: urgent data ti
(generally not used) source port # | dest port # E?/”gy'f’;i
ACK: ACK # sequence number of data

valid ———acknowledgement number (not segments!)

PSH: push data now WPIB& Receive window

(generally not used)—| M’“ Urg data pnter fi\t)r?l:veiﬁing
RST, SYN, FIN:—| OF‘% (variable length) to accept
connection estab

(setup, teardown

commands) application
Internet data
checksum (variable length)
(as in UDP)

Transport Layer 35

TCP Round Trip Time and Timeout

Q: how to set TCP  Q: how to estimate RTT?
; + SampleRTT: measured time fro
timeout value? s:;':enf transmission until AfCKm
« longer than RTT receipt
= but RTT varies
+ too short:
premature timeout

> SampleRTT will vary, want
estimated RTT "smoother”

= average several recent

other side

sae = .~ 'C', echoes
W back 'C'
host ACKs

* unnecessary

measurements

= cumulative ACK receipt ¢,

. hoed 9543, Acks,
Q: how receiver handles of s CK&,
out-of-order segments
= A: TCP spec doesn't .
- ime
isr?\)p;'lenl\‘lgr\?())r‘ simple telnet scenario l

Transport Layer 36

TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT
+ Exponential weighted moving average

» influence of past sample decreases exponentially fast
« typical value: 0. =0.125

Transport Layer 3-8

retransmissions

% too long: slow
reaction to segment
loss

Transport Layer 37

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasiaeurecom.fr

20 1 !

RITT (millseconds)

1 s 15 2 20 3% 4 0 5 e 71 78 8 %2 9 106
time (seconnds)

[S=SampleRTT = Esimawed RTT

Transport Layer 39



TCP Round Trip Time and Timeout

Setting the timeout

+ EstimatedRTT plus "safety margin”
= large variation in EstimatedRTT -> larger safety margin

« first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-B)*DevRTT +

p* | SampleRTT-EstimatedRTT |
(typically, B = 0.25)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

TCP reliable data transfer

+ TCP creates reliable
service onh top of IP's
unreliable service

% pipelined segments
+ cumulative acks

TCP uses single
retransmission timer

+ refransmissions are
triggered by:
= timeout events
= duplicate acks

Transport Layer 3-10

Transport Layer 3-11

TCP sender events:

data rcvd from app:

timeout:

+ Create segment with
seq #
> seq # is byte-stream
number of first data
byte in segment
start timer if not
already running (think
of timer as for oldest
unacked segment)

TCP retransmission scenarios (more)

« refransmit segment
that caused timeout

« restart timer

Ack revd:

« If acknowledges
previously unacked
segments

= update what is known to
be acked

= start timer if there are
outstanding segments

TCP: retransmission scenarios

Borost A Host oD

Segsg,
W

A0

+~— timeout ——

SendBase
=100

time .
lost ACK scenario

Transport Layer 3-12

92 timeout —|

SendBase
=100
SendBase
=120

92 timeout —y+— Seq

Seq=

SendBase 1
=120 i
premature timeout

time

Transport Layer 3-13

Fast Retransmit

]

Host A Host B
Segs:
=92,
| 8 bytes datg
5 | _Sege o\
g 295100, 29 N -
£ X <
loss
=120
SendBase ,AC/
=120
time

B

Cumulative ACK scenario

Transport Layer

+ time-out period often
relatively long:
= long delay before
resending lost packet
+ detect lost segments
via duplicate ACKs.
= sender often sends

many segments back-to-
back

= if segment is lost, there
will likely be many
duplicate ACKs.

314

« if sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

= fast retransmit: resend
segment before timer
expires

Transport Layer  3-16



Host A Host B

B B2
\X

L85eng ong
Se9ment

time

Resending a segment after triple duplicate ACK
Transport Layer 3-17

TCP Connection Management

Three way handshake:

Step 1: client host sends TCP SYN segment to server
= specifies initial seq #
* no data
Step 2: server host receives SYN, replies with SYNACK
segment
= server allocates buffers
= specifies server initial seq. #

Step 3: client receives SYNACK, replies with ACK segment,
which may contain data

Transport Layer 3-19

TCP Connection Management (cont.)

Step 3: client receives FIN, @ client server@
replies with ACK. closing

K

= Enters “timed wait" - U
will respond with ACK

to received FINs

Step 4: server, receives
ACK. Connection closed.

K
PO closing
/
k‘
closed

d wait

Q. time:

close

Transport Layer 3-21

TCP Flow Control

flow control
sender won't overflow

+ receive side of TCP receiver's buffer by

connection has a transmitting too much,
receive buffer: too fast
o RevWindow —#
dits fram TCP | application = speed—maTchmg
1

m;";" —*mees  Service: matching the

| send rate to the
receiving app's drain
rate

‘I— RevBuffer —4
+ app process may be

slow at reading from
buffer

Transport Layer 3-18

TCP Connection Management (cont.)

Closing a connection: 1B client server [@)

. close
client closes socket:

clientSocket.close() ;

Fin

Step 1: client end system
sends TCP FIN control
segment to server

(@)
B close
/
Ack

=
Step 2: server receives E \
FIN, replies with ACK. 3
Closes connection, sends £
F
FIN. closed

Transport Layer 3-20

Principles of Congestion Control

Congestion:

+« informally: “too many sources sending too much
data too fast for networkto handle”
+ different from flow control
+ manifestations:
= lost packets (buffer overflow at routers)
= long delays (queueing in router buffers)

Transport Layer  3-22



TCP congestion control: additive increase,

Approaches towards congestion control ———
multiplicative decrease

Two broad approaches towards congestion control: « approach:increase transmission rate (window size),
probing for usable bandwidth, until loss occurs
end-end congestion network-assisted = additive increase: increase cwnd by 1 MSS every
control: congestion control: RTT until loss detected
« no explicit feedback from = routers provide feedback = multiplicative decrease: cut cwnd in half after
network to end systems loss °
+ congestion inferred from K
end-system observed loss, é 24rcones
delay saw tooth 5
+ approach taken by TCP behavior: probing & 16 Kopes
for bandwidth 4
i:j; time
3

Transport Layer 3-23 Transport Layer 3-24

TCP Congestion Control: details TCP Slow Start

+ sender limits transmission: How does sender + when connection
LastByteSent-LastByteAcked discover congestion? begins, increase rate
< cwnd %+ loss event = timeout or exponentially until
+ roughly, 3 duplicate acks first loss event:
rate = cwnd + TCP sender reduces ) :"T'bal"y cwnd =1 Mi_?_r
: RTT  Dyfes/sec rate (cwnd) after loss * double cwnd every
- . . event = done by incrementing
+ cwnd is dynamic, function of cwnd for every ACK
perceived network congestion received
time
|
Transport Layer 3-25 Transport Layer 3-26

Refinement: inferring loss

« after 3 dup ACKs:
= cwnd is cut in half
= window then grows
linearly
< but after timeout event:
= cwnd instead set to 1
MSS;
= window then grows
exponentially
= to a threshold, then
grows linearly

Philosophy:

« 3 dup ACKs indicates
network capable of
delivering some segments
+ timeout indicates a
“more alarming”
congestion scenario

Transport Layer 3-27



