
1

Transport Layer 3-4

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

 full duplex data:
 bi-directional data flow

in same connection

 MSS: maximum segment
size

 connection-oriented:
 handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

 flow controlled:
 sender will not

overwhelm receiver

 point-to-point:
 one sender, one receiver

 reliable, in-order byte
steam:
 no “message boundaries”

 pipelined:
 TCP congestion and flow

control set window size

 send & receive buffers

socket

door

TCP

send buffer

TCP

receive buffer

socket

door

segment

application

writes data
application

reads data

Transport Layer 3-5

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

Receive window

Urg data pnterchecksum

FSRPAU
head
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-6

TCP seq. #’s and ACKs
Seq. #’s:

 byte stream
“number” of first
byte in segment’s
data

ACKs:

 seq # of next byte
expected from
other side

 cumulative ACK

Q: how receiver handles
out-of-order segments

 A: TCP spec doesn’t
say, - up to
implementor

Host A Host B

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

Transport Layer 3-7

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

 longer than RTT
 but RTT varies

 too short:
premature timeout

 unnecessary
retransmissions

 too long: slow
reaction to segment
loss

Q: how to estimate RTT?
 SampleRTT: measured time from

segment transmission until ACK
receipt

 SampleRTT will vary, want
estimated RTT “smoother”

 average several recent
measurements

Transport Layer 3-8

TCP Round Trip Time and Timeout

EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

 Exponential weighted moving average

 influence of past sample decreases exponentially fast

 typical value:  = 0.125

Transport Layer 3-9

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

2

Transport Layer 3-10

TCP Round Trip Time and Timeout

Setting the timeout
 EstimatedRTT plus “safety margin”

 large variation in EstimatedRTT -> larger safety margin

 first estimate of how much SampleRTT deviates from
EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-)*DevRTT +

*|SampleRTT-EstimatedRTT|

(typically,  = 0.25)

Then set timeout interval:

Transport Layer 3-11

TCP reliable data transfer

 TCP creates reliable
service on top of IP’s
unreliable service

 pipelined segments

 cumulative acks

 TCP uses single
retransmission timer

 retransmissions are
triggered by:
 timeout events

 duplicate acks

Transport Layer 3-12

TCP sender events:
data rcvd from app:

 Create segment with
seq #

 seq # is byte-stream
number of first data
byte in segment

 start timer if not
already running (think
of timer as for oldest
unacked segment)

timeout:

 retransmit segment
that caused timeout

 restart timer

Ack rcvd:

 If acknowledges
previously unacked
segments
 update what is known to

be acked

 start timer if there are
outstanding segments

Transport Layer 3-13

TCP: retransmission scenarios

Host A

time
premature timeout

Host B

S
eq

=9
2

 t
im

eo
ut

Host A

loss

ti
m

e
ou

t

lost ACK scenario

Host B

X

time
S

eq
=9

2
 t

im
eo

ut

SendBase
= 100

SendBase
= 120

SendBase
= 120

SendBase
= 100

Transport Layer 3-14

TCP retransmission scenarios (more)

Host A

loss

ti
m

e
ou

t

Cumulative ACK scenario

Host B

X

time

SendBase
= 120

Transport Layer 3-16

Fast Retransmit

 time-out period often
relatively long:
 long delay before

resending lost packet

 detect lost segments
via duplicate ACKs.
 sender often sends

many segments back-to-
back

 if segment is lost, there
will likely be many
duplicate ACKs.

 if sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:
 fast retransmit: resend

segment before timer
expires

3

Transport Layer 3-17

Host A Host B

time

X

Resending a segment after triple duplicate ACK
Transport Layer 3-18

TCP Flow Control

 receive side of TCP
connection has a
receive buffer:

 speed-matching
service: matching the
send rate to the
receiving app’s drain
rate

 app process may be
slow at reading from
buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control

Transport Layer 3-19

TCP Connection Management

Three way handshake:

Step 1: client host sends TCP SYN segment to server

 specifies initial seq #

 no data

Step 2: server host receives SYN, replies with SYNACK
segment

 server allocates buffers

 specifies server initial seq. #

Step 3: client receives SYNACK, replies with ACK segment,
which may contain data

Transport Layer 3-20

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

client server

close

close

closed
ti

m
e
d
 w

ai
t

Transport Layer 3-21

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

 Enters “timed wait” -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

.

client server

closing

closing

closed

ti
m

e
d
 w

ai
t

closed

Transport Layer 3-22

Principles of Congestion Control

Congestion:
 informally: “too many sources sending too much

data too fast for network to handle”

 different from flow control

 manifestations:

 lost packets (buffer overflow at routers)

 long delays (queueing in router buffers)

4

Transport Layer 3-23

Approaches towards congestion control

end-end congestion
control:

 no explicit feedback from
network

 congestion inferred from
end-system observed loss,
delay

 approach taken by TCP

network-assisted
congestion control:

 routers provide feedback
to end systems

Two broad approaches towards congestion control:

Transport Layer 3-24

TCP congestion control: additive increase,
multiplicative decrease

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion

window

 approach: increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

 additive increase: increase cwnd by 1 MSS every
RTT until loss detected

 multiplicative decrease: cut cwnd in half after
loss

time

c
w
n
d

:
c
o
n
g
e
s
ti
o
n
 w

in
d
o
w

 s
iz

e

saw tooth
behavior: probing

for bandwidth

Transport Layer 3-25

TCP Congestion Control: details

 sender limits transmission:
LastByteSent-LastByteAcked

 cwnd

 roughly,

 cwnd is dynamic, function of
perceived network congestion

How does sender
discover congestion?

 loss event = timeout or
3 duplicate acks

 TCP sender reduces
rate (cwnd) after loss
event

rate =
cwnd
RTT

Bytes/sec

Transport Layer 3-26

TCP Slow Start

 when connection
begins, increase rate
exponentially until
first loss event:
 initially cwnd = 1 MSS

 double cwnd every RTT

 done by incrementing
cwnd for every ACK
received

Host A

R
T

T

Host B

time

Transport Layer 3-27

Refinement: inferring loss

 after 3 dup ACKs:

 cwnd is cut in half

 window then grows
linearly

 but after timeout event:

 cwnd instead set to 1
MSS;

 window then grows
exponentially

 to a threshold, then
grows linearly

 3 dup ACKs indicates
network capable of
delivering some segments
 timeout indicates a
“more alarming”
congestion scenario

Philosophy:

