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Transport Layer 3-1

Transport services and protocols

 logical communication
between processes 

 transport protocols run in 
end systems 

 send side: breaks app 
messages into segments, 
passes to  network layer

 rcv side: reassembles 
segments into messages, 
passes to app layer

 more than one transport 
protocol available to apps

 Internet: TCP and UDP
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Internet transport-layer protocols

 reliable, in-order 
delivery: TCP

 unreliable, unordered 
delivery: UDP

 services not available: 
 delay guarantees

 bandwidth guarantees
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Sending and receiving 
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Receiving packets
 host receives IP 

datagrams
 each datagram has source 

IP address, destination IP 
address

 each datagram carries 1 
transport-layer segment

 each segment has source, 
destination port number 

 host uses IP addresses & 
port numbers to direct 
segment to right socket

source port # dest port #

32 bits

application
data 

(message)

other header fields

TCP/UDP segment format
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Connection-oriented (TCP)

 TCP socket : 
 source IP address

 source port number

 dest IP address

 dest port number

 All four values to direct 
segment to appropriate 
socket

 server host may support 
many simultaneous TCP 
sockets:

 web servers have 
different sockets for 
each connecting client
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Connection-oriented
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UDP: User Datagram Protocol [RFC 768]

 Simple transport protocol

 UDP segments may be:

 lost

 delivered out of order 

 connectionless:
 no handshaking between 

sender and receiver

 each UDP segment 
handled independently 
of others

Why UDP?
 no connection 

establishment (which can 
add delay)

 simple: no connection state 
at sender, receiver

 small segment header

 no congestion control: UDP 
can blast away as fast as 
desired
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UDP: more

 often used for 
streaming multimedia 
apps
 loss tolerant

 rate sensitive

 other UDP uses
 DNS

 SNMP

 reliable transfer over 
UDP: add reliability at 
application layer

source port # dest port #

32 bits

Application
data 

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header
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UDP checksum

Sender:
 treat segment contents 

as sequence of 16-bit 
integers

 checksum: addition (1’s 
complement sum) of 
segment contents

 sender puts checksum 
value into UDP checksum 
field

Receiver:
 compute checksum of 

received segment

 check if computed checksum 
equals checksum field value:

 NO - error detected

 YES - no error detected

Goal: detect errors in transmitted segment
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Internet Checksum Example

 Note: when adding numbers, a carryout from 
the most significant bit needs to be added 
to the result

 Example: add two 16-bit integers

1 1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0
1 1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1 1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0
1 0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

wraparound

sum

checksum
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Principles of Reliable data transfer

 important in app., transport, link layers

 top-10 list of important networking topics!

 characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)
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Principles of Reliable data transfer

 important in app., transport, link layers

 top-10 list of important networking topics!

 characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)
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Principles of Reliable data transfer

 important in app., transport, link layers

 top-10 list of important networking topics!

 characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)
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Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above, 
(e.g., by app.). Passed data to 

deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over 

unreliable channel to receiver

rdt_rcv(): called when packet 
arrives on rcv-side of channel

deliver_data(): called by 
rdt to deliver data to upper
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Reliable data transfer: getting started

We’ll:

 incrementally develop reliable data transfer 
protocol (rdt)

 only unidirectional data transfer
 but control info will flow on both directions!

 use finite state machines (FSM)

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this 
“state” next state 

uniquely determined 
by next event

event
actions
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Rdt1.0: reliable transfer over a reliable channel

 underlying channel perfectly reliable
 no bit errors

 no loss of packets

 separate FSMs for sender, receiver:
 sender sends data into underlying channel

 receiver read data from underlying channel

Wait for 

call from 

above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

Wait for 

call from 

below

rdt_rcv(packet)

sender receiver
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Rdt2.0: channel with bit errors
 underlying channel may flip bits in packet

 checksum to detect bit errors

 the question: how to recover from errors:
 acknowledgements (ACKs): receiver explicitly tells sender 

that pkt received OK

 negative acknowledgements (NAKs): receiver explicitly 
tells sender that pkt had errors

 sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
 error detection

 receiver feedback: control msgs (ACK,NAK) rcvr->sender

How do humans recover from “errors”
during conversation?
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Rdt2.0: channel with bit errors

 underlying channel may flip bits in packet
 checksum to detect bit errors

 the question: how to recover from errors:
 acknowledgements (ACKs): receiver explicitly tells sender 

that pkt received OK

 negative acknowledgements (NAKs): receiver explicitly 
tells sender that pkt had errors

 sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
 error detection

 receiver feedback: control msgs (ACK,NAK) rcvr->sender
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rdt2.0: FSM specification

Wait for 

call from 

above

sndpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && 

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 

corrupt(rcvpkt)

Wait for 

ACK or 

NAK

Wait for 

call from 

belowsender

receiver
rdt_send(data)

L
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rdt2.0 has a fatal flaw!

What happens if 
ACK/NAK corrupted?

 sender doesn’t know what 
happened at receiver!

 can’t just retransmit: 
possible duplicate

Handling duplicates: 
 sender retransmits current 

pkt if ACK/NAK garbled

 sender adds sequence 
number to each pkt

 receiver discards (doesn’t 
deliver up) duplicate pkt

Sender sends one packet, 
then waits for receiver 
response

stop and wait
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rdt2.1: sender, handles garbled ACK/NAKs

Wait for 

call 0 from 
above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

Wait for 

ACK or 
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||

isNAK(rcvpkt) )

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt) 

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||

isNAK(rcvpkt) )

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt)

Wait for

call 1 from 
above

Wait for 

ACK or 
NAK 1

L
L
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rdt2.1: receiver, handles garbled ACK/NAKs

Wait for 

0 from 
below

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && 

not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 

&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)
sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

Wait for 

1 from 
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq0(rcvpkt) 

extract(rcvpkt,data)

deliver_data(data)
sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 

not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)
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rdt2.1: discussion

Sender:

 seq # added to pkt

 two seq. #’s (0,1) will 
suffice.  

 must check if received 
ACK/NAK corrupted 

 twice as many states
 state must “remember” 

whether “current” pkt
has 0 or 1 seq. #

Receiver:

 must check if received 
packet is duplicate
 state indicates whether 

0 or 1 is expected pkt 
seq #

 note: receiver can not
know if its last 
ACK/NAK received OK 
at sender
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rdt2.2: a NAK-free protocol

 same functionality as rdt2.1, using ACKs only

 instead of NAK, receiver sends ACK for last pkt
received OK
 receiver must explicitly include seq # of pkt being ACKed

 duplicate ACK at sender results in same action as 
NAK: retransmit current pkt
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rdt2.2: sender, receiver fragments

Wait for 

call 0 from 
above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||

isACK(rcvpkt,1) )

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt,0)

Wait for 

ACK
0

sender FSM
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 

&& has_seq1(rcvpkt) 

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt)

Wait for 

0 from 
below

rdt_rcv(rcvpkt) && 

(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

L
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rdt3.0: channels with errors and loss

New assumption:
underlying channel can 
also lose packets (data 
or ACKs)
 checksum, seq. #, ACKs, 

retransmissions will be 
of help, but not enough

Approach: sender waits 
“reasonable” amount of 
time for ACK 

 retransmits if no ACK 
received in this time

 if pkt (or ACK) just delayed 
(not lost):

 retransmission will be  
duplicate, but use of seq. 
#’s already handles this

 receiver must specify seq 
# of pkt being ACKed

 requires countdown timer
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rdt3.0 sender

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)
start_timer

rdt_send(data)

Wait 

for 
ACK0

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||
isACK(rcvpkt,1) )

Wait for 

call 1 from 
above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||
isACK(rcvpkt,0) )

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,1)

stop_timer

stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for 

call 0from 
above

Wait 

for 
ACK1

L

rdt_rcv(rcvpkt)

L

L

L
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rdt3.0 in action

Transport Layer 3-29

rdt3.0 in action
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rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

2 ∗ 𝑑𝑝𝑟𝑜𝑝

last packet bit transmitted, t = 𝑑𝑡𝑟𝑎𝑛𝑠

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next 

packet, 2 ∗ 𝑑𝑝𝑟𝑜𝑝 + 𝑑𝑡𝑟𝑎𝑛𝑠

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑑𝑡𝑟𝑎𝑛𝑠

2 ∗ 𝑑𝑝𝑟𝑜𝑝 + 𝑑𝑡𝑟𝑎𝑛𝑠
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Pipelined protocols

pipelining: allows yet-to-be-acknowledged pkts
 range of sequence numbers must be increased

 buffering at sender and/or receiver

 two generic forms of pipelined protocols: go-Back-N, 
selective repeat
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Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

last bit transmitted, t =𝑑𝑡𝑟𝑎𝑛𝑠

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next 

packet, t =2 ∗ 𝑑𝑝𝑟𝑜𝑝 + 𝑑𝑡𝑟𝑎𝑛𝑠

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
3 ∗ 𝑑𝑡𝑟𝑎𝑛𝑠

2 ∗ 𝑑𝑝𝑟𝑜𝑝 + 𝑑𝑡𝑟𝑎𝑛𝑠

2 ∗ 𝑑𝑝𝑟𝑜𝑝
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Pipelined Protocols

Go-back-N: big picture:
 sender can have up to 

N unacked packets in 
pipeline

 rcvr only sends 
cumulative acks
 doesn’t ack packet if 

there’s a gap

 sender has timer for 
oldest unacked packet
 if timer expires, 

retransmit all unack’ed 
packets

Selective Repeat: big pic
 sender can have up to 

N unack’ed packets in 
pipeline

 rcvr sends individual 
ack for each packet

 sender maintains timer 
for each unacked 
packet
 when timer expires, 

retransmit only 
unack’ed packet
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Go-Back-N
Sender:
 k-bit seq # in pkt header

 “window” of up to N, consecutive unack’ed pkts allowed

 ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”

 may receive duplicate ACKs (see receiver)

 timer for each in-flight pkt

 timeout(n): retransmit pkt n and all higher seq # pkts in window
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GBN in
action
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Selective Repeat

 receiver individually acknowledges correctly 
received pkts
 buffers pkts for in-order delivery to upper layer

 sender only resends pkts for which ACK not 
received
 sender timer for each unACKed pkt

 sender window
 N consecutive seq #’s

 again limits seq #s of sent, unACK’ed pkts
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Selective repeat: sender, receiver windows

Transport Layer 3-40

Selective repeat

data from above :
 if next available seq # in 

window, send pkt

timeout(n):
 resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

 mark pkt n as received

 if n smallest unACKed pkt, 
advance window base to 
next unACKed seq # 

sender
pkt n in [rcvbase, rcvbase+N-1]

 send ACK(n)

 out-of-order: buffer

 in-order: deliver (also 
deliver buffered, in-order 
pkts), advance window to 
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

 ACK(n)

otherwise:
 ignore 

receiver
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Selective repeat in action


