
1

Transport Layer 3-1

Transport services and protocols

 logical communication
between processes 

 transport protocols run in 
end systems 

 send side: breaks app 
messages into segments, 
passes to  network layer

 rcv side: reassembles 
segments into messages, 
passes to app layer

 more than one transport 
protocol available to apps

 Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

Transport Layer 3-2

Internet transport-layer protocols

 reliable, in-order 
delivery: TCP

 unreliable, unordered 
delivery: UDP

 services not available: 
 delay guarantees

 bandwidth guarantees

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

Transport Layer 3-3

Sending and receiving 

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

Transport Layer 3-4

Receiving packets
 host receives IP 

datagrams
 each datagram has source 

IP address, destination IP 
address

 each datagram carries 1 
transport-layer segment

 each segment has source, 
destination port number 

 host uses IP addresses & 
port numbers to direct 
segment to right socket

source port # dest port #

32 bits

application
data 

(message)

other header fields

TCP/UDP segment format

Transport Layer 3-5

Connection-oriented (TCP)

 TCP socket : 
 source IP address

 source port number

 dest IP address

 dest port number

 All four values to direct 
segment to appropriate 
socket

 server host may support 
many simultaneous TCP 
sockets:

 web servers have 
different sockets for 
each connecting client

Transport Layer 3-6

Connection-oriented

Client
IP:B

P1

client
IP: A

P1P2P4

server
IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

P5 P6 P3

D-IP:C

S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C

S-IP: B



2

Transport Layer 3-7

UDP: User Datagram Protocol [RFC 768]

 Simple transport protocol

 UDP segments may be:

 lost

 delivered out of order 

 connectionless:
 no handshaking between 

sender and receiver

 each UDP segment 
handled independently 
of others

Why UDP?
 no connection 

establishment (which can 
add delay)

 simple: no connection state 
at sender, receiver

 small segment header

 no congestion control: UDP 
can blast away as fast as 
desired

Transport Layer 3-8

UDP: more

 often used for 
streaming multimedia 
apps
 loss tolerant

 rate sensitive

 other UDP uses
 DNS

 SNMP

 reliable transfer over 
UDP: add reliability at 
application layer

source port # dest port #

32 bits

Application
data 

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

Transport Layer 3-9

UDP checksum

Sender:
 treat segment contents 

as sequence of 16-bit 
integers

 checksum: addition (1’s 
complement sum) of 
segment contents

 sender puts checksum 
value into UDP checksum 
field

Receiver:
 compute checksum of 

received segment

 check if computed checksum 
equals checksum field value:

 NO - error detected

 YES - no error detected

Goal: detect errors in transmitted segment

Transport Layer 3-10

Internet Checksum Example

 Note: when adding numbers, a carryout from 
the most significant bit needs to be added 
to the result

 Example: add two 16-bit integers

1 1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0
1 1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1 1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0
1 0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

wraparound

sum

checksum

Transport Layer 3-11

Principles of Reliable data transfer

 important in app., transport, link layers

 top-10 list of important networking topics!

 characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-12

Principles of Reliable data transfer

 important in app., transport, link layers

 top-10 list of important networking topics!

 characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)



3

Transport Layer 3-13

Principles of Reliable data transfer

 important in app., transport, link layers

 top-10 list of important networking topics!

 characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-14

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above, 
(e.g., by app.). Passed data to 

deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over 

unreliable channel to receiver

rdt_rcv(): called when packet 
arrives on rcv-side of channel

deliver_data(): called by 
rdt to deliver data to upper

Transport Layer 3-15

Reliable data transfer: getting started

We’ll:

 incrementally develop reliable data transfer 
protocol (rdt)

 only unidirectional data transfer
 but control info will flow on both directions!

 use finite state machines (FSM)

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this 
“state” next state 

uniquely determined 
by next event

event
actions

Transport Layer 3-16

Rdt1.0: reliable transfer over a reliable channel

 underlying channel perfectly reliable
 no bit errors

 no loss of packets

 separate FSMs for sender, receiver:
 sender sends data into underlying channel

 receiver read data from underlying channel

Wait for 

call from 

above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

Wait for 

call from 

below

rdt_rcv(packet)

sender receiver

Transport Layer 3-17

Rdt2.0: channel with bit errors
 underlying channel may flip bits in packet

 checksum to detect bit errors

 the question: how to recover from errors:
 acknowledgements (ACKs): receiver explicitly tells sender 

that pkt received OK

 negative acknowledgements (NAKs): receiver explicitly 
tells sender that pkt had errors

 sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
 error detection

 receiver feedback: control msgs (ACK,NAK) rcvr->sender

How do humans recover from “errors”
during conversation?

Transport Layer 3-18

Rdt2.0: channel with bit errors

 underlying channel may flip bits in packet
 checksum to detect bit errors

 the question: how to recover from errors:
 acknowledgements (ACKs): receiver explicitly tells sender 

that pkt received OK

 negative acknowledgements (NAKs): receiver explicitly 
tells sender that pkt had errors

 sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
 error detection

 receiver feedback: control msgs (ACK,NAK) rcvr->sender



4

Transport Layer 3-19

rdt2.0: FSM specification

Wait for 

call from 

above

sndpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && 

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 

corrupt(rcvpkt)

Wait for 

ACK or 

NAK

Wait for 

call from 

belowsender

receiver
rdt_send(data)

L

Transport Layer 3-20

rdt2.0 has a fatal flaw!

What happens if 
ACK/NAK corrupted?

 sender doesn’t know what 
happened at receiver!

 can’t just retransmit: 
possible duplicate

Handling duplicates: 
 sender retransmits current 

pkt if ACK/NAK garbled

 sender adds sequence 
number to each pkt

 receiver discards (doesn’t 
deliver up) duplicate pkt

Sender sends one packet, 
then waits for receiver 
response

stop and wait

Transport Layer 3-21

rdt2.1: sender, handles garbled ACK/NAKs

Wait for 

call 0 from 
above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

Wait for 

ACK or 
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||

isNAK(rcvpkt) )

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt) 

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||

isNAK(rcvpkt) )

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt)

Wait for

call 1 from 
above

Wait for 

ACK or 
NAK 1

L
L

Transport Layer 3-22

rdt2.1: receiver, handles garbled ACK/NAKs

Wait for 

0 from 
below

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && 

not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 

&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)
sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

Wait for 

1 from 
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq0(rcvpkt) 

extract(rcvpkt,data)

deliver_data(data)
sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 

not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

Transport Layer 3-23

rdt2.1: discussion

Sender:

 seq # added to pkt

 two seq. #’s (0,1) will 
suffice.  

 must check if received 
ACK/NAK corrupted 

 twice as many states
 state must “remember” 

whether “current” pkt
has 0 or 1 seq. #

Receiver:

 must check if received 
packet is duplicate
 state indicates whether 

0 or 1 is expected pkt 
seq #

 note: receiver can not
know if its last 
ACK/NAK received OK 
at sender

Transport Layer 3-24

rdt2.2: a NAK-free protocol

 same functionality as rdt2.1, using ACKs only

 instead of NAK, receiver sends ACK for last pkt
received OK
 receiver must explicitly include seq # of pkt being ACKed

 duplicate ACK at sender results in same action as 
NAK: retransmit current pkt



5

Transport Layer 3-25

rdt2.2: sender, receiver fragments

Wait for 

call 0 from 
above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||

isACK(rcvpkt,1) )

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt,0)

Wait for 

ACK
0

sender FSM
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 

&& has_seq1(rcvpkt) 

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt)

Wait for 

0 from 
below

rdt_rcv(rcvpkt) && 

(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

L

Transport Layer 3-26

rdt3.0: channels with errors and loss

New assumption:
underlying channel can 
also lose packets (data 
or ACKs)
 checksum, seq. #, ACKs, 

retransmissions will be 
of help, but not enough

Approach: sender waits 
“reasonable” amount of 
time for ACK 

 retransmits if no ACK 
received in this time

 if pkt (or ACK) just delayed 
(not lost):

 retransmission will be  
duplicate, but use of seq. 
#’s already handles this

 receiver must specify seq 
# of pkt being ACKed

 requires countdown timer

Transport Layer 3-27

rdt3.0 sender

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)
start_timer

rdt_send(data)

Wait 

for 
ACK0

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||
isACK(rcvpkt,1) )

Wait for 

call 1 from 
above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||
isACK(rcvpkt,0) )

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,1)

stop_timer

stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for 

call 0from 
above

Wait 

for 
ACK1

L

rdt_rcv(rcvpkt)

L

L

L

Transport Layer 3-28

rdt3.0 in action

Transport Layer 3-29

rdt3.0 in action

Transport Layer 3-30

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

2 ∗ 𝑑𝑝𝑟𝑜𝑝

last packet bit transmitted, t = 𝑑𝑡𝑟𝑎𝑛𝑠

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next 

packet, 2 ∗ 𝑑𝑝𝑟𝑜𝑝 + 𝑑𝑡𝑟𝑎𝑛𝑠

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑑𝑡𝑟𝑎𝑛𝑠

2 ∗ 𝑑𝑝𝑟𝑜𝑝 + 𝑑𝑡𝑟𝑎𝑛𝑠



6

Transport Layer 3-31

Pipelined protocols

pipelining: allows yet-to-be-acknowledged pkts
 range of sequence numbers must be increased

 buffering at sender and/or receiver

 two generic forms of pipelined protocols: go-Back-N, 
selective repeat

Transport Layer 3-32

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

last bit transmitted, t =𝑑𝑡𝑟𝑎𝑛𝑠

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next 

packet, t =2 ∗ 𝑑𝑝𝑟𝑜𝑝 + 𝑑𝑡𝑟𝑎𝑛𝑠

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
3 ∗ 𝑑𝑡𝑟𝑎𝑛𝑠

2 ∗ 𝑑𝑝𝑟𝑜𝑝 + 𝑑𝑡𝑟𝑎𝑛𝑠

2 ∗ 𝑑𝑝𝑟𝑜𝑝

Transport Layer 3-33

Pipelined Protocols

Go-back-N: big picture:
 sender can have up to 

N unacked packets in 
pipeline

 rcvr only sends 
cumulative acks
 doesn’t ack packet if 

there’s a gap

 sender has timer for 
oldest unacked packet
 if timer expires, 

retransmit all unack’ed 
packets

Selective Repeat: big pic
 sender can have up to 

N unack’ed packets in 
pipeline

 rcvr sends individual 
ack for each packet

 sender maintains timer 
for each unacked 
packet
 when timer expires, 

retransmit only 
unack’ed packet

Transport Layer 3-34

Go-Back-N
Sender:
 k-bit seq # in pkt header

 “window” of up to N, consecutive unack’ed pkts allowed

 ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”

 may receive duplicate ACKs (see receiver)

 timer for each in-flight pkt

 timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-37

GBN in
action

Transport Layer 3-38

Selective Repeat

 receiver individually acknowledges correctly 
received pkts
 buffers pkts for in-order delivery to upper layer

 sender only resends pkts for which ACK not 
received
 sender timer for each unACKed pkt

 sender window
 N consecutive seq #’s

 again limits seq #s of sent, unACK’ed pkts



7

Transport Layer 3-39

Selective repeat: sender, receiver windows

Transport Layer 3-40

Selective repeat

data from above :
 if next available seq # in 

window, send pkt

timeout(n):
 resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

 mark pkt n as received

 if n smallest unACKed pkt, 
advance window base to 
next unACKed seq # 

sender
pkt n in [rcvbase, rcvbase+N-1]

 send ACK(n)

 out-of-order: buffer

 in-order: deliver (also 
deliver buffered, in-order 
pkts), advance window to 
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

 ACK(n)

otherwise:
 ignore 

receiver

Transport Layer 3-41

Selective repeat in action


