
1

Application Layer

 e-mail

 web

 instant messaging

 remote login

 P2P file sharing

 multi-user network
games

 streaming stored video
(YouTube)

 voice over IP

 real-time video
conferencing

 cloud computing

 …

 …

Application 2-1

Creating a network app

Write programs that
 run on (different) end

systems

 communicate over network

 e.g., web server - browser

No need to write software
for network-core devices

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Application 2-2

Client-server architecture

server:

 always-on

 permanent IP address

 server farms for
scaling

clients:
 communicate with server

 not always connected

 dynamic IP addresses

 do not communicate
directly with each other

client/server

Application 2-3

Pure P2P architecture

 no always-on server

 end systems directly
communicate

 peers are not always
connected and change IP
addresses

peer-peer

Application 2-4

Hybrid of client-server and P2P
Skype

 voice-over-IP P2P application
 server: finding address of remote party
 client-client speech: direct

Application 2-5

Processes communicating

process: program running
within a host.

 processes communicate
by exchanging messages

client process: process
that initiates
communication

server process: process
that waits to be
contacted

Application 2-6

2

Sockets

 process sends/receives
messages to/from its
socket

 socket analogous to door
process

TCP with

buffers,

variables

socket

host or

server

process

TCP with

buffers,

variables

socket

host or

server

Internet

controlled

by OS

controlled by

app developer

Application 2-7

Addressing processes

 a process must have an
identifier

 host device has unique
IP address

 identifier includes both
IP address and port
numbers associated with
process on host.

 example port numbers:
 HTTP server: 80

 Mail server: 25

 to send HTTP message
to gaia.cs.umass.edu web
server:
 IP address: 128.119.245.12

 Port number: 80

Application 2-8

App-layer protocol defines

 types of messages
 e.g., request, response

 message syntax:
 what fields in messages

 message semantics
 meaning of information in

fields

 rules for when and how
processes send &
respond to messages

public-domain protocols:

 defined in RFCs

e.g., HTTP, SMTP

proprietary protocols:

 e.g., Skype

Application 2-9

What transport service does an app need?

Data loss
 some apps (e.g., audio) can

tolerate some loss
 other apps (e.g., file

transfer) require 100%
reliable data transfer

Timing
 some apps (e.g.,

Internet telephony,
interactive games)
require low delay

Throughput

 some apps (e.g.,
multimedia) require
minimum amount of
throughput to be
“effective”

 other apps (“elastic apps”)
make use of whatever
throughput they get

…

Application 2-10

Internet transport protocols services

TCP service:
 connection-oriented: setup

required between client and
server processes

 reliable transport

 flow control

 congestion control

 does not provide: timing,
minimum throughput
guarantees

UDP service:
 unreliable data transfer

between sending and
receiving process

Application 2-11

Web and HTTP

 web page consists of objects

 object can be HTML file, JPEG image, audio file,…

 web page consists of base HTML-file with
referenced objects

 each object is addressable by a URL

 example URL:

www.someschool.edu/someDept/pic.gif

host name path name

Application 2-12

3

HTTP overview

HTTP: hypertext
transfer protocol

 Web’s application layer
protocol

 client/server model

 client: browser

 server: Web server

PC running
Explorer

Server
running

web
server

Mac running
Chrome

Application 2-13

HTTP overview

Uses TCP:
 client initiates TCP

connection (creates socket)
to server, port 80

 server accepts TCP
connection from client

 HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)

 TCP connection closed

HTTP is “stateless”
 server maintains no

information about
past client requests

protocols that maintain
“state” are complex!

 past history (state) must
be maintained

 if server/client crashes,
their views of “state” may
be inconsistent

Application 2-14

HTTP connections

non-persistent HTTP

 at most one object
sent over TCP
connection.

persistent HTTP

 multiple objects can
be sent over single
TCP connection
between client, server.

Application 2-15

HTTP request message

 two types of HTTP messages: request, response

 HTTP request message:
 ASCII (human-readable format)

request line
(GET, POST,
HEAD commands)

header
lines

carriage return,
line feed at start
of line indicates
end of header lines

Application 2-16

GET /index.html HTTP/1.1\r\n

Host: www-net.cs.umass.edu\r\n

User-Agent: Firefox/3.6.10\r\n

Accept: text/html,application/xhtml+xml\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n

Keep-Alive: 115\r\n

Connection: keep-alive\r\n

\r\n

carriage return character

line-feed character

HTTP response message

status line

(protocol

status code

status phrase)

header

lines

data, e.g.,

requested

HTML file

Application 2-17

HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n

ETag: "17dc6-a5c-bf716880"\r\n

Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=ISO-8859-

1\r\n

\r\n

data data data data data ...

HTTP response status codes

200 OK

 request succeeded, requested object later in this msg

301 Moved Permanently

 requested object moved, new location specified later in this
msg (Location:)

400 Bad Request

 request msg not understood by server

404 Not Found

 requested document not found on this server

505 HTTP Version Not Supported

 status code appears in 1st line in server->client
response message.

 some sample codes:

Application 2-18

4

User-server state: cookies

many Web sites use
cookies

four components:
1) cookie header line of

HTTP response message
2) cookie header line in

HTTP request message
3) cookie file kept on

user’s host, managed by
user’s browser

4) back-end database at
Web site

example:

 Susan always access
Internet from PC

 visits specific e-
commerce site for first
time

 when initial HTTP
requests arrives at site,
site creates:

 unique ID

 entry in backend
database for ID

Application 2-19

Cookies: keeping “state” (cont.)

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
usual http request msg Amazon server

creates ID
1678 for user create

entry

usual http response
Set-cookie: 1678

ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734

amazon 1678

backend
database

Application 2-20

Web caches (proxy server)

 user sets browser:
Web accesses via
cache

 browser sends all
HTTP requests to
cache
 object in cache: cache

returns object

 else cache requests
object from origin
server, then returns
object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client
origin
server

origin
server

Application 2-21

More about Web caching

 cache acts as both
client and server

 typically cache is
installed by ISP
(university, company,
residential ISP)

why Web caching?

 reduce response time
for client request

 reduce traffic on an
institution’s access
link

Application 2-22

Conditional GET

 Goal: don’t send object if
cache has up-to-date
cached version

 cache: specify date of
cached copy in HTTP
request

 server: response contains
no object if cached copy is
up-to-date:

cache server

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object

not

modified

before

<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object

modified

after

<date>

Application 2-23

Email

Three major components:
 user agents

 mail servers

 simple mail transfer
protocol: SMTP

User Agent

 “mail reader”

 composing, editing, reading
mail messages

 e.g., Outlook, elm, Mozilla
Thunderbird, iPhone mail
client

 outgoing, incoming messages
stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Application 2-24

5

Mail servers

Mail Servers
 mailbox contains incoming

messages for user

 message queue of outgoing
(to be sent) mail messages

 SMTP protocol between mail
servers to send email
messages

 client: sending mail
server

 “server”: receiving mail
server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Application 2-25

SMTP

 uses TCP to reliably transfer email message from client
to server, port 25

 direct transfer: sending server to receiving server

 three phases of transfer

 handshaking (greeting)

 transfer of messages

 closure

 command/response interaction

 commands: ASCII text

 response: status code and phrase

Application 2-26

Mail message format

SMTP: protocol for
exchanging email msgs

RFC 822: standard for text
message format:

 header lines, e.g.,
 To:

 From:

 Subject:

 body
 the “message”

header

body

blank
line

Application 2-27

Mail access protocols

 SMTP: delivery/storage to receiver’s server

 mail access protocol: retrieval from server

 POP: Post Office Protocol

• authorization (agent <-->server) and download

 IMAP: Internet Mail Access Protocol

• more features (more complex)

• manipulation of stored msgs on server

 HTTP: gmail, Hotmail, Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

Application 2-28

DNS

Why not centralize DNS?

 single point of failure

 traffic volume

 distant centralized
database

 maintenance

doesn’t scale!

DNS services

 hostname to IP
address translation

 load distribution
 replicated Web

servers: set of IP
addresses for one
canonical name

Application 2-29

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu

DNS servers

umass.edu

DNS servers
yahoo.com

DNS servers
amazon.com

DNS servers

pbs.org

DNS servers

Distributed, Hierarchical Database

client wants IP for www.amazon.com:
 client queries a root server to find com DNS server

 client queries com DNS server to get amazon.com DNS server

 client queries amazon.com DNS server to get IP address for
www.amazon.com

Application 2-30

6

DNS: Root name servers

13 root name
servers worldwide

b USC-ISI Marina del Rey, CA

l ICANN Los Angeles, CA

e NASA Mt View, CA

f Internet Software C. Palo Alto,

CA (and 36 other locations)

i Autonomica, Stockholm (plus

28 other locations)

k RIPE London (also 16 other locations)

m WIDE Tokyo (also Seoul,

Paris, SF)

a Verisign, Dulles, VA

c Cogent, Herndon, VA (also LA)

d U Maryland College Park, MD
g US DoD Vienna, VA

h ARL Aberdeen, MD
j Verisign, (21 locations)

Application 2-31

TLD and Authoritative Servers

Top-level domain (TLD) servers:
 responsible for com, org, net, edu, aero, jobs,

museums, and all top-level country domains, e.g.:
uk, fr, ca, jp

Authoritative DNS servers:
 organization’s DNS servers, hostname to IP

mappings for organization’s servers
 can be maintained by organization or service

provider

Application 2-32

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server

dns.cs.umass.edu

7
8

TLD DNS server

DNS name
resolution example

 host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
 contacted server

replies with name of
server to contact

 “I don’t know this
name, but ask this
server”

Application 2-33

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2

45

6

authoritative DNS server

dns.cs.umass.edu

7

8

TLD DNS server

3recursive query:
 puts burden of name

resolution on
contacted name
server

DNS name
resolution example

Application 2-34

DNS: caching and updating records

 once (any) name server learns mapping, it caches
mapping

 cache entries timeout (disappear) after some
time

 TLD servers typically cached in local name
servers

• Thus root name servers not often visited

Application 2-35

Pure P2P architecture

 no always-on server

 arbitrary end systems
directly communicate

 peers are intermittently
connected and change IP
addresses

peer-peer

Application 2-36

7

File Distribution: Server-Client vs P2P

Question : How much time to distribute file
from one server to N peers?

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

File, size F

us: server upload

bandwidth

ui: peer i upload

bandwidth

di: peer i download

bandwidth

Application 2-37

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u
m

 D
is

tr
ib

u
ti
o
n
 T

im
e P2P

Client-Server

Server-client vs. P2P: example

Application 2-38

File distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of
peers exchanging
chunks of a file

obtain list
of peers

trading
chunks

peer

P2P file distribution

Application 2-39

BitTorrent

 file divided into 256KB chunks.

 peer joining torrent:

 has no chunks, but will accumulate them over time

 registers with tracker to get list of peers,
connects to subset of peers (“neighbors”)

 while downloading, peer uploads chunks to other
peers.

 peers may come and go

 once peer has entire file, it may (selfishly) leave or
(altruistically) remain

Application 2-40

BitTorrent

Pulling Chunks

 at any given time,
different peers have
different subsets of
file chunks

 periodically, a peer
(Alice) asks each
neighbor for list of
chunks that they have.

 Alice sends requests
for her missing chunks
 rarest first

Sending Chunks: tit-for-tat

 Alice sends chunks to four
neighbors currently
sending her chunks at the
highest rate
 re-evaluate top 4 every 10

secs

 every 30 secs: randomly
select another peer,
starts sending chunks
 newly chosen peer may join

top 4

Application 2-41

P2P example: Skype

 pairs of users
communicate

 proprietary
application-layer
protocol

 Index maps usernames
to IP addresses

Skype clients (SC)

Supernode

(SN)

Skype
login server

Application 2-42

