

Introduction 1-1

What's the Internet?

- Protocols control sending and receiving
 TCP, IP, HTTP, Ethernet
- Internet: "network of networks"
- Internet standards
 RFC: Request for
 - comments
 - IETF: Internet Engineering Task Force

Introduction 1-2

What's the Internet? Service view:

- distributed applications:
 - Web, VoIP, email, games, e-commerce, file sharing
- communication services provided to apps:
 - reliable data delivery
 - "best effort" (unreliable) data delivery

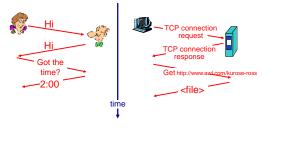
Introduction 1-3

What's a protocol?

<u>human protocols:</u>

- * "what's the time?"
- * "I have a question"
- introductions

network protocols:


- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

Introduction 1-4

What's a protocol?

a human protocol and a computer network protocol:

Introduction 1-5

A closer look at network structure:

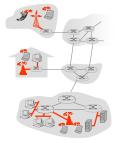
- network edge: applications and hosts
- access networks, physical media: wired, wireless communication links

network core:

- interconnected routers
- network of networks

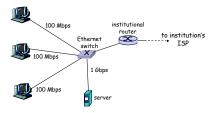
The network edge:

* end systems (hosts):


- run application programs
- e.g. Web, email
- at "edge of network"
- client/server model
 - client host requests, receives
 - service from always-on server e.g. Web browser/server; client,
 - email client/server
- * peer-peer model:
 - minimal (or no) use of dedicated servers
 - e.g. Skype, BitTorrent

r (server

Access networks and physical media

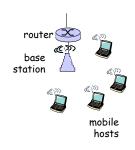

Q: How to connect end

- systems to edge router?
- residential access nets
 institutional access
- networks (school, company)
- mobile access networks

Introduction 1-8

Ethernet Internet access

peer

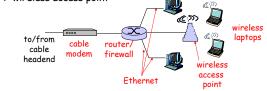

- typically used in companies, universities, etc
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps Ethernet
- end systems typically connect into Ethernet switch

Introduction 1-9

Introduction 1-7

Wireless access networks

- wireless access network
 via base station aka "access point"
- wireless LANs:
- 802.11
- wider-area wireless access
 provided by telco operator
 - 3G, 4G



Introduction 1-10

Home networks

Typical home network components:

- DSL or cable modem
- router/firewall
- ✤ Ethernet
- wireless access point

Introduction 1-11

Physical Media

- physical link: what lies between transmitter & receiver
- guided media (cables):
 signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

Twisted Pair (TP)

- two insulated copper wires
 - Category 3: traditional phone wires, 10 Mbps Ethernet
 - Category 5: 100Mbps Ethernet

Physical Media: coax, fiber

Coaxial cable:

 two concentric copper conductors

Fiber optic cable:

- high-speed operation:
 high-speed point-to-point transmission (e.g., 10's-
- 100's Gpbs) low error rate
- repeaters spaced far apart
- immune to electromaanetic noise

Physical media: radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation
- environment effects: reflection
- obstruction by objects
- interference

Radio link types:

- terrestrial microwave
 e.g. up to 45 Mbps channels
- LAN (e.g., WiFi)
- 11Mbps, 54 Mbps
 wide-area (cellular)
- 3*G*, 4*G*
- satellite
 - 270 msec end-end delay
 geosynchronous versus low altitude

Introduction 1-14

The Network Core

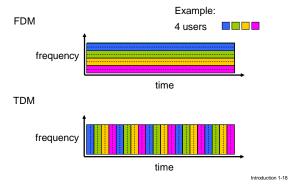
- mesh of interconnected routers
- Two main principles:
 circuit switching:
 - dedicated circuit per call: telephone net
 - packet-switching: data sent thru net in discrete "chunks"

Introduction 1-15

Introduction 1-17

Network Core: Circuit Switching

- link bandwidth, switch capacity reserved for call
- no sharing
- Guaranteed
 performance
- call setup required



Introduction 1-16

Network Core: Circuit Switching

- network resources (e.g., bandwidth) divided into "pieces"
- $\boldsymbol{\ast}$ pieces allocated to calls
- resource piece *idle* if not used by owning call (no sharing)
- dividing link bandwidth into "pieces"
 - frequency division
 - time division

Circuit Switching: FDM and TDM

Network Core: Packet Switching

- data stream divided into *packets*
- packets share network resources
- each packet uses full link bandwidth
- resources used as needed

- resource contention:demand can exceed
- capacity
- congestion: packets queue
- store and forward: packets move one hop at a time

Introduction 1-19

Packet switching

- * great for bursty data
 - resource sharing
 - simpler, no call setup
- congestion: packet delay and loss
 - protocols needed for reliable data transfer, congestion control
- How to provide quality of service?
 - bandwidth guarantees for audio/video apps
 - still an unsolved problem

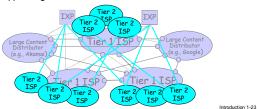
Introduction 1-20

Internet structure: network of networks

- roughly hierarchical
- * at center: small # of well-connected large networks
 - "tier-1" commercial ISPs (e.g., Verizon, Sprint, AT&T, Qwest, Level3), national & international coverage
 - large content distributors (Google, Akamai, Microsoft)
 - treat each other as equals

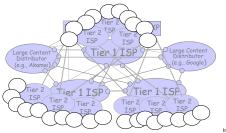
Introduction 1-21

Tier-1 ISP: e.g., Sprint

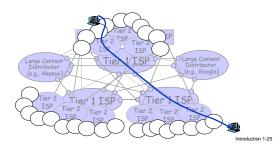


Introduction 1-22

Internet structure: network of networks


"tier-2" ISPs: smaller (often regional) ISPs

- *connect to one or more tier-1 (provider) ISPs
 - each tier-1 has many tier-2 *customer nets*
 - tier 2 pays tier 1 provider
- tier-2 nets sometimes peer directly with each other (bypassing tier 1), or at IXP


Internet structure: network of networks

- "Tier-3" ISPs, local ISPs
- customer of tier 1 or tier 2 network
 - last hop ("access") network (closest to end systems)

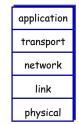
Internet structure: network of networks

 a packet passes through *many* networks from source host to destination host

Protocol "Layers"

Networks are complex,

- with many "pieces":
 - hosts
 - routers
 - links of various media
 - * applications
 - * protocols
 - hardware,
 - software

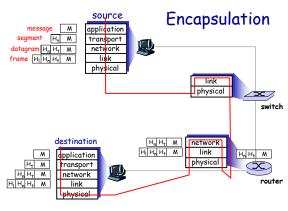

Question:

- Is there any hope of organizing structure of network?
- Or at least our discussion of networks?

Introduction 1-26

Internet protocol stack

- application: supporting network applications
 FTP, SMTP, HTTP
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 IP, routing protocols
 - IF, rouring protocols
- link: data transfer between neighboring network elements
 Ethernet, 802.11 (WiFi)
- * physical: bits "on the wire"


Introduction 1-27

ISO/OSI reference model

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machinespecific conventions
- session: synchronization, checkpointing, recovery of data exchange
- Internet stack "missing" these layers!
 - these services, *if needed*, must be implemented in application

Introduction 1-28

