

LUNDS TEKNISKA HÖGSKOLA Lunds universitet

Formler och Tabeller Digital Signalbehandling

Institutionen för Elektro- och informationsteknik

Nedelko Grbić

Lund 2014

Innehåll

1	Gru	ndläggande samband	5					
	1.1	Trigonometriska formler	5					
	1.2	Matristeori	6					
	1.3	Kurvformer	7					
	1.4	Några ofta förekommande samband	7					
	1.5	Korrelation	8					
	1.6	Kretsmodeller (en insignal, en utsignal)	8					
	1.7	Några beräkningsmetoder	9					
	1.8	Analog sinussignal genom linjärt, kausalt filter	10					
	1.9	Tidsdiskret sinussignal genom linjärt, kausalt filter	11					
2	Tra	sformer	12					
_	2.1	Laplacetransform	$12^{$					
		2.1.1 Laplacetransform av kausala signaler	12					
		2.1.2 Enkelsidig Laplacetransform av icke-kausala signaler	13					
	22	Fouriertransform för tidskontinuerlig signal	14					
	2.2 9.3	7 transformon	16					
	2.0	2 - 11 ansionment $2 - 1 - 7$ transform as langely signalar	16					
		2.3.1 Z-transform av kausala signaler	10					
	9.4	2.3.2 Elikeisidig Z-transform av icke kausala signaler	10					
	2.4 9.5	Fouriertransform for tidsdiskret signal	10					
	2.0	Pourlerserieutveckning	20					
			20					
	0.0	$2.5.2 \text{DIskret tid} \qquad (\text{DDT})$	20					
	2.6	Diskreta Fouriertransformen (DFT)	21					
		2.6.1 Definition	21					
		2.6.2 Cirkular faltning	21					
		2.6.3 Icke-cirkulär faltning med DFT	22					
		2.6.4 Relation till Fouriertransformen $X(f)$:	22					
		2.6.5 Relation till Fourierserier	22					
		2.6.6 Parsevals teorem	22					
		2.6.7 Några egenskaper hos DFT	23					
	2.7	Några fönsterfunktioner och deras Fouriertransform	23					
3	San	pling av analoga signaler	25					
	3.1	Sampling och rekonstruktion	25					
	3.2	Distorsionsmått	27					
		3.2.1 Vikningsdistorsion vid sampling	27					
		3.2.2 Periodiserings distorsion vid rekonstruktion	27					
	3.3	Kvantiseringsdistorsion	28					
	3.4	Decimering och interpolering						
4	Ana	oga filter	29					
	4.1	Filterapproximationer av ideala LP-filter	29					
		4.1.1 Butterworthfilter	29					
		4.1.2 Chebyshevfilter	30					

	4.2	Frekvenstransformationer av analoga filter	35
5	Tid	sdiskreta filter	36
	5.1	FIR-filter och IIR-filter	36
	5.2	FIR-filter med fönstermetoden	36
	5.3	Ekvirippel FIR-filter	39
	5.4	FIR-filter med minstakvadratmetoden	39
	5.5	IIR-filter	40
		5.5.1 Impulsinvarians	40
		5.5.2 Bilinjär transformation	40
		5.5.3 Koefficientkvantisering	41
	5.6	Latticefilter	41
6	\mathbf{Spe}	ktralskattning	43

1 Grundläggande samband

1.1 Trigonometriska formler

 $\begin{aligned} \sin \alpha &= \cos(\alpha - \pi/2) & \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \\ \cos \alpha &= \sin(\alpha + \pi/2) & \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \\ \cos^2 \alpha + \sin^2 \alpha &= 1 & 2\sin \alpha \sin \beta = \cos(\alpha - \beta) - \cos(\alpha + \beta) \\ \cos^2 \alpha - \sin^2 \alpha &= \cos 2\alpha & 2\sin \alpha \cos \beta = \sin(\alpha + \beta) + \sin(\alpha - \beta) \\ 2\sin \alpha \cos \alpha &= \sin 2\alpha & 2\cos \alpha \cos \beta = \cos(\alpha + \beta) + \cos(\alpha - \beta) \\ \sin(-\alpha) &= -\sin \alpha & \sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} \\ \cos(-\alpha) &= \cos \alpha & \cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} \\ \cos^2 \alpha &= \frac{1}{2}(1 + \cos 2\alpha) \end{aligned}$

$$\cos \alpha = \frac{1}{2} (e^{j\alpha} + e^{-j\alpha}), \quad \sin \alpha = \frac{1}{2j} (e^{j\alpha} - e^{-j\alpha}), \quad e^{j\alpha} = \cos \alpha + j \sin \alpha$$
$$A \cos \alpha + B \sin \alpha = \sqrt{A^2 + B^2} \cos(\alpha - \beta)$$
$$d\ddot{a}r \ \cos \beta = \frac{A}{\sqrt{A^2 + B^2}}, \quad \sin \beta = \frac{B}{\sqrt{A^2 + B^2}}$$
$$och \ \beta = \begin{cases} \arctan \frac{B}{A} & \text{om } A \ge 0\\ \arctan \frac{B}{A} + \pi & \text{om } A < 0 \end{cases}$$

$$A\cos\alpha + B\sin\alpha = \sqrt{A^2 + B^2}\sin(\alpha + \beta)$$

där $\cos\beta = \frac{B}{\sin\beta} - \frac{A}{\sin\beta}$

$$\operatorname{och} \beta = \begin{cases} \operatorname{arctan} \frac{A}{B} & \operatorname{om} B \ge 0 \\ \end{cases}$$

$$\left\{ \arctan \frac{A}{B} + \pi \quad \text{om } B < 0 \right\}$$

Grader	Rad	sin	cos	\tan	\cot
0	0	0	1	Ο	$+\infty$
30	$\frac{\pi}{\pi}$	$\frac{1}{1}$	$\frac{1}{\sqrt{3}}$	<u> </u>	$\frac{1}{\sqrt{3}}$
45	$\frac{6}{\pi}$	$\begin{vmatrix} 2\\ 1 \end{vmatrix}$	$\begin{array}{c} 2\\ 1\end{array}$	$\sqrt{3}$	1
40	4	$\sqrt{\frac{2}{2}}$	$\sqrt{2}$	1	1
60	$\frac{\pi}{3}$	$\left \frac{\sqrt{3}}{2}\right $	$\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$
90	$\frac{\pi}{2}$	1	0	$\pm\infty$	0

1.2 Matristeori

Beteckning av matris A och vektor x

En matris **A** av ordningen mxn och en vektor **x** med dimensionen n definieras av

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Matrisen **A** är symmetrisk om $a_{ij} = a_{ji} \forall ij$. I betecknar enhetsmatrisen.

Transponering av matris A

$$\mathbf{B} = \mathbf{A}^T \operatorname{där} b_{ij} = a_{ji}$$
$$(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$$

Determinant av matris A

$$det\mathbf{A} = |\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{vmatrix} = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} det \mathbf{M}_{ij}$$

där \mathbf{M}_{ij} är den matris som erhålles om rad i och kolumn j i matrisen \mathbf{A} strykes.

$$det\mathbf{AB} = det\mathbf{A} \cdot det\mathbf{B}$$

Speciellt gäller för en 2x2 matris:

$$det\mathbf{A} = a_{11}a_{22} - a_{12}a_{21}$$

Invers av matris A

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I} \quad (\text{om } det\mathbf{A}\#0)$$
$$\mathbf{A}^{-1} = \frac{1}{det\mathbf{A}} \cdot \mathbf{C}^{T}$$

där C definieras av

$$c_{ij} = (-1)^{i+j} \cdot det \mathbf{M}_{ij}$$
$$(\mathbf{AB})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1}$$

Speciellt gäller för en 2x2 matris:

$$\mathbf{A}^{-1} = \frac{1}{det\mathbf{A}} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

Egenvärden och egenvektorer

Egenvärdena $(\lambda_i, i = 1, 2, ..., n)$ och egenvektorerna $(\mathbf{q}_i, i = 1, 2, ..., n)$ är lösningar till ekvationssystemet

$$\mathbf{A}\mathbf{q} = \lambda\mathbf{q}$$
 eller $(\mathbf{A} - \lambda\mathbf{I})\mathbf{q} = 0$

Egenvärdena kan beräknas som lösningar till karakteristiska ekvationen (sekularekvationen) till ${\bf A}$

$$det(\lambda \mathbf{I} - \mathbf{A}) = \lambda^n + \alpha_{n-1}\lambda^{n-1} + \dots + \alpha_0 = 0$$

 $det(\lambda \mathbf{I} - \mathbf{A})$ kallas karakteristiska polynomet (sekularpolynomet) till \mathbf{A} .

1.3 Kurvformer

 $u(t) = \begin{cases} 1 & t \ge 0\\ 0 & t < 0 \end{cases}$ Enhetssteg $\delta(t) = \begin{cases} \infty & t = 0\\ 0 & t \neq 0 \end{cases}$ Impulsfunktion $\int_{-\infty}^{\infty} \delta(t) dt = 1$ $\int_{-\infty}^{\infty} x(t)\delta(t)dt = x(0)$ $p(t) = \begin{cases} 1 & |t| < \frac{1}{2} \\ 0 & |t| > \frac{1}{2} \end{cases}$ Rektangelfunktion sinc $x = \frac{\sin \pi x}{\pi x}$ Sinc-funktion $diric(x,N) = \frac{\sin\left(\frac{Nx}{2}\right)}{N\sin\left(\frac{x}{2}\right)}$ Periodisk sinc-funktion $e^{st} = e^{\sigma t} e^{j\Omega t}$ Komplex sinus $e^{j\Omega t} = \cos\Omega t + j\sin\Omega t$ Komplex odämpad sinus

1.4 Några ofta förekommande samband

Summa av geometrisk serie

$$\sum_{n=0}^{N-1} a^n = \begin{cases} N & \text{om } a = 1\\ \\ \frac{1-a^N}{1-a} & \text{om } a \neq 1 \end{cases}$$

Summation av sinussignal över jämnt antal perioder

$$\sum_{n=0}^{N-1} e^{j2\pi \ kn/N} = \begin{cases} N & \text{om } k = 0, \pm N, \dots \\ 0 & \text{f.ö.} \end{cases}$$

1.5 Korrelation

Korrelation, korskorrelation, spektrum, korspektrum och koherens mellan in- och utsignal

Normalfördelade stok.var. $X_i \in N(m_i, \sigma_i)$

$$E\{X_1X_2X_3X_4\} = E\{X_1X_2\} E\{X_3X_4\} + E\{X_1X_3\} E\{X_2X_4\} + E\{X_1X_4\} E\{X_2X_4\} + E\{X_1X_4\} E\{X_2X_3\} - 2m_1m_2m_3m_4$$

1.6 Kretsmodeller (en insignal, en utsignal)

1) Kanonisk form (direkt form II)

2) Differensekvation

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

3) Tillståndsbeskrivning

$$\begin{cases} \mathbf{v}(n+1) &= \mathbf{F}\mathbf{v}(n) + \mathbf{q} \cdot x(n) \\ y(n) &= \mathbf{g}^{\mathbf{T}}\mathbf{v}(n) + d \cdot x(n) \end{cases}$$

där

$$\mathbf{F} = \begin{pmatrix} 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & & 0 & 1 \\ -a_k & -a_{k-1} & \dots & -a_2 & -a_1 \end{pmatrix} \quad ; \quad \mathbf{q} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

$$\mathbf{g}^{\mathbf{T}} = (b_k, \dots, b_2, b_1) - b_0(a_k, \dots, a_2, a_1) \quad ; \quad d = b_0$$

4) Systemfunktion

$$\mathcal{H}(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + \dots + a_N z^{-N}}$$

1.7 Några beräkningsmetoder

1) Faltning

$$y(n) = h * x = \sum_{k=-\infty}^{\infty} h(k)x(n-k) = \sum_{k=-\infty}^{\infty} h(n-k)x(k)$$

2) Tillståndsekvation

a) Direkt lösning

$$y(n) = \mathbf{g}^{\mathbf{T}} \cdot \mathbf{F}^{n} \mathbf{v}(0) + \sum_{k=0}^{n-1} \mathbf{g}^{\mathbf{T}} \cdot \mathbf{F}^{n-1-k} \mathbf{q} x(k) u(n-1) + dx(n)$$

b) Impulssvar

$$h(n) = \mathbf{g}^{\mathbf{T}} \cdot \mathbf{F}^{n-1} \mathbf{q} u(n-1) + d\delta(n)$$

c) Systemfunction

$$\mathcal{H}(z) = \mathbf{g}^{\mathbf{T}}[z\mathbf{I} - \mathbf{F}]^{-1}\mathbf{q} + d$$

1.8 Analog sinussignal genom linjärt, kausalt filter1) Komplex, icke-kausal insignal

$$\begin{aligned} x(t) &= e^{j\Omega_0 t} = \left(\cos(\Omega_0 t) + j \; \sin(\Omega_0 t)\right) \quad -\infty < t < \infty \\ y(t) &= \int_{\tau=0}^{\infty} h(\tau) x(t-\tau) d\tau = \int_{\tau=0}^{\infty} h(\tau) e^{j\Omega_0 (t-\tau)} d\tau = \underbrace{H(s)|_{s=j\Omega_0} \; e^{j\Omega_0 t}}_{\text{stationär}} \end{aligned}$$

2) Komplex, kausal insignal

$$\begin{aligned} x(t) &= e^{j\Omega_0 t} u(t) = \left(\cos(\Omega_0 t) + j \ \sin(\Omega_0 t)\right) u(t); \quad X(s) = \frac{1}{s - j\Omega_0} \\ Y(s) &= H(s)X(s) = \frac{T(s)}{N(s)} \ \frac{1}{s - j\Omega_0} = \underbrace{\frac{T_1(s)}{N(s)}}_{\text{transient}} + \underbrace{H(s)|_{s = j\Omega_0} \ \frac{1}{s - j\Omega_0}}_{\text{stationär}} \\ y(t) &= \text{transient} + \underbrace{H(s)|_{s = j\Omega_0} \ e^{j\Omega_0 t}}_{\text{stationär}} \end{aligned}$$

3) Reell, icke-kausal insignal

$$\begin{aligned} x(t) &= Re\{e^{j\Omega_0 t}\} = \cos(\Omega_0 t) \quad -\infty < t < \infty \\ y(t) &= \int_{\tau=0}^{\infty} h(\tau)x(t-\tau)d\tau = \int_{\tau=0}^{\infty} h(\tau)\frac{1}{2}(e^{j\Omega_0(t-\tau)} + e^{-j\Omega_0(t-\tau)})d\tau = \\ &= \underbrace{|H(s)|_{s=j\Omega_0} \ \cos(\Omega_0 t + \arg\{H(s)|_{s=j\Omega_0}\})}_{\text{stationär}} \end{aligned}$$

4) Reell, kausal insignal

$$x(t) = Re\{e^{j\Omega_0 t}\} u(t) = \cos(\Omega_0 t) u(t); \quad X(s) = \frac{s}{s^2 + \Omega_0^2}$$
$$Y(s) = H(s)X(s) = \frac{T(s)}{N(s)} \frac{s}{s^2 + \Omega_0^2} = \underbrace{\frac{T_1(s)}{N(s)}}_{\text{transient}} + \underbrace{\frac{C_1 s + C_0}{s^2 + \Omega_0^2}}_{\text{stationär}}$$

$$\begin{split} H(s)|_{s=j\Omega_0} &= A \ e^{j\theta}; \ C_1 = A \cos(\theta); \ C_0 = -A\Omega_0 \sin\theta \\ y(t) &= \text{transient} + \underbrace{C_1 \cos(\Omega_0 t) + \frac{C_0}{\Omega_0} \sin(\Omega_0 t)}_{\text{stationär}} = \\ &= \text{transient} + \underbrace{|H(s)|_{s=j\Omega_0} \ \cos(\Omega_0 t + \arg\{H(s)|_{s=j\Omega_0}\})}_{\text{stationär}} \end{split}$$

1.9 Tidsdiskret sinussignal genom linjärt, kausalt filter1) Komplex, icke-kausal insignal

$$x(n) = e^{j\omega_0 n} = (\cos(\omega_0 n) + j \sin(\omega_0 n)) - \infty < n < \infty$$
$$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k) = \sum_{k=0}^{\infty} h(k)e^{j\omega_0(n-k)} = \underbrace{H(z)|_{z=e^{j\omega_0}} e^{j\omega_0 n}}_{\text{stationär}}$$

2) Komplex, kausal insignal

$$\begin{aligned} x(n) &= e^{j\omega_0 n} u(n) = (\cos(\omega_0 n) + j \, \sin(\omega_0 n)) \, u(n); \quad X(z) = \frac{1}{1 - e^{j\omega_0} z^{-1}} \\ Y(z) &= H(z) X(z) = \frac{T(z)}{N(z)} \, \frac{1}{1 - e^{j\omega_0} z^{-1}} = \underbrace{\frac{T_1(z)}{N(z)}}_{\text{transient}} + \underbrace{H(z)|_{z=e^{j\omega_0}} \frac{1}{1 - e^{j\omega_0} z^{-1}}}_{\text{stationär}} \\ y(n) &= \text{transient} + \underbrace{H(z)|_{z=e^{j\omega_0}} e^{j\omega_0 n}}_{\text{stationär}} \end{aligned}$$

3) Reell, icke-kausal insignal

$$\begin{aligned} x(n) &= Re\{e^{j\omega_0 n}\} = \cos(\omega_0 n) \quad -\infty < n < \infty \\ y(n) &= \sum_{k=0}^{\infty} h(k)x(n-k) = \sum_{k=0}^{\infty} h(k)\frac{1}{2}(e^{j\omega_0(n-k)} + e^{-j\omega_0(n-k)}) = \\ &= \underbrace{|H(z)|_{z=e^{j\omega_0}} \, \cos(\omega_0 n + \arg\{H(z)|_{z=e^{j\omega_0}}\})}_{\text{stationär}} \end{aligned}$$

4) Reell, kausal insignal

$$x(n) = Re\{e^{j\omega_0 n}\} u(n) = \cos(\omega_0 n) u(n); \quad X(z) = \frac{1 - \cos\omega_0 z^{-1}}{1 - 2\cos\omega_0 z^{-1} + z^{-2}}$$
$$Y(z) = H(z)X(z) = \frac{T(z)}{N(z)} \frac{1 - \cos\omega_0 z^{-1}}{1 - 2\cos\omega_0 z^{-1} + z^{-2}} = \underbrace{\frac{T_1(z)}{N(z)}}_{\text{transient}} + \underbrace{\frac{C_0 + C_1 z^{-1}}{1 - 2\cos\omega_0 z^{-1} + z^{-2}}}_{\text{stationär}}$$

$$\begin{aligned} H(z)|_{z=e^{j\omega_0}} &= A \ e^{j\theta}; \ C_0 = A \cos(\theta); \ C_1 = -A(\sin\omega_0\sin\theta + \cos\omega_0\cos\theta) \\ y(n) &= \text{transient} + \underbrace{C_0\cos(\omega_0 n) + \frac{C_1 + C_0\cos(\omega_0)}{\sin(\omega_0)}\sin(\omega_0 n)}_{\text{stationär}} = \\ &= \text{transient} + \underbrace{|H(z)|_{z=e^{j\omega_0}} \ \cos(\omega_0 n + \arg\{H(z)|_{z=e^{j\omega_0}}\})}_{\text{stationär}} \end{aligned}$$

2 Transformer

2.1 Laplacetransform

2.1.1 Laplacetransform av kausala signaler

I nedanstående tabell är f(t) = 0 för t < 0 (dvs $f(t) \cdot u(t) = f(t)$).

15. $\int_{0-}^{\infty} f_1(t) \cdot f_2(t) dt = \frac{1}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} \mathcal{F}_1(s) \cdot \mathcal{F}_2(-s) ds$

Parsevals relation

16.	$\delta(t)$	\longleftrightarrow	1
17.	$\delta^n(t)$	\longleftrightarrow	s^n
18.	1	\longleftrightarrow	$\frac{1}{s}$
19.	$\frac{1}{n!} t^n$	\longleftrightarrow	$\frac{1}{s^{n+1}}$
20.	$e^{-\sigma_0 t}$	\longleftrightarrow	$\frac{1}{s+\sigma_0}$
21.	$\frac{1}{(n-1)!} t^{n-1} e^{-\sigma_0 t}$	\longleftrightarrow	$\frac{1}{(s+\sigma_0)^n}$
22.	$\sin\Omega_0 t$	\longleftrightarrow	$\frac{\Omega_0}{s^2 + \Omega_0^2}$
23.	$\cos\Omega_0 t$	\longleftrightarrow	$\frac{s}{s^2 + \Omega_0^2}$
24.	$t \cdot \sin \Omega_0 t$	\longleftrightarrow	$\frac{2\Omega_0 s}{(s^2 + \Omega_0^2)^2}$
25.	$t \cdot \cos \Omega_0 t$	\longleftrightarrow	$\frac{s^2 - \Omega_0^2}{(s^2 + \Omega_0^2)^2}$
26.	$e^{-\sigma_0 t} \sin \Omega_0 t$	\longleftrightarrow	$\frac{\Omega_0}{(s+\sigma_0)^2+\Omega_0^2}$
27.	$e^{-\sigma_0 t} \cos \Omega_0 t$	\longleftrightarrow	$\frac{s+\sigma_0}{(s+\sigma_0)^2+\Omega_0^2}$
28.	$e^{-\sigma_0 t} \sin(\Omega_0 t + \phi)$	\longleftrightarrow	$\frac{(s+\sigma_0)\sin\phi+\Omega_0\cos\phi}{(s+\sigma_0)^2+\Omega_0^2}$

2.1.2 Enkelsidig Laplacetransform av icke-kausala signaler

Beteckning

$$\begin{split} \mathcal{F}^+(s) &= \int_{0^-}^\infty f(t) e^{-st} dt & \text{Enkelsidig Laplacetransform,} \\ \mathcal{F}(s) &= \mathcal{F}^+(s) & \text{För kausala signaler} \end{split}$$

Vid derivering av f(t) erhålles

$$\frac{d}{dt} f(t) \iff s \cdot \mathcal{F}^+(s) - f(0-)$$
 Derivering en gång

$$\frac{d^n}{dt} f(t) \iff s^n \mathcal{F}^+(s) - s^{n-1} f(0-)$$

$$-s^{n-2} f^{(1)}(0-) - \dots f^{(n-1)}(0-)$$
 Derivering *n* gånger

2.2 Fouriertransform för tidskontinuerlig signal

$$\Omega = 2\pi F$$

1.	$w(t) = \mathcal{F}^{-1}\{W(F)\} = \int_{-\infty}^{\infty} W(F) e^{j2\pi Ft} dF$	\longleftrightarrow	$W(F) = \mathcal{F}\{w(t)\} = \int_{-\infty}^{\infty} w(t)e^{-j2\pi Ft}dt$
2.	$\sum_{ u} a_{ u} w_{ u}(t)$	\longleftrightarrow	$\sum_{\nu} a_{\nu} W_{\nu}(F)$
3.	$w^*(-t)$	\longleftrightarrow	$W^*(F)$
4.	W(t)	\longleftrightarrow	w(-F)
5.	w(at)	\longleftrightarrow	$\frac{1}{ a } W\left(\frac{F}{a}\right)$
6.	$w(t-t_0)$	\longleftrightarrow	$W(F) \cdot e^{-j2\pi F t_0}$
7.	$w(t) \cdot e^{j2\pi F_0 t}$	\longleftrightarrow	$W(F - F_0)$
8.	$w^*(t)$	\longleftrightarrow	$W^*(-F)$
9.	$\frac{d^n w(t)}{dt^n}$	\longleftrightarrow	$(j2\pi F)^n W(F)$
10.	$\int_{-\infty}^{t} w(\tau) d\tau$	\longleftrightarrow	$\frac{1}{j2\pi F} W(F)$ om $W(F) = 0$ för $F = 0$
11.	$-j2\pi t \ w(t)$	\longleftrightarrow	$\frac{dw}{dF}$
12.	$w_1(t) * w_2(t)$	\longleftrightarrow	$W_1(F) \cdot W_2(F)$
13.	$w_1(t) \cdot w_2(t)$	\longleftrightarrow	$W_1(F) * W_2(F)$
14.	$\int_{-\infty}^{\infty} w(t) ^2 dt = \int_{-\infty}^{\infty} W(F) ^2 dF$		Parsevals relation
15.	$\int_{-\infty}^{\infty} w_1(t) \cdot w_2(t) dt = \\ \int_{-\infty}^{\infty} W_1(F) \cdot W_2^*(F) dF$		$w_1(t), w_2(t)$ reella
16.	$\delta(t)$	\longleftrightarrow	1
17.	1	\longleftrightarrow	$\delta(F)$
18.	u(t)	\longleftrightarrow	$\frac{1}{j2\pi F} + \frac{1}{2} \delta(F)$
19.	$e^{-at}u(t)$	\longleftrightarrow	$\frac{1}{a+j\Omega}$

$$\begin{array}{rcl} 20. & e^{-a|t|} & \longleftrightarrow & \frac{2^a}{a^2+\Omega^2} \\ \\ 21. & e^{j2\pi F_0 t} & \longleftrightarrow & \delta(F-F_0) \\ \\ 22. & \sin 2\pi F_0 t & (t) & \longleftrightarrow & j\frac{1}{2} \left\{ \delta(F+F_0) - \delta(F-F_0) \right\} \\ \\ 23. & \sin 2\pi F_0 t \cdot u(t) & \longleftrightarrow & \frac{\Omega_0}{\Omega_0^2 - \Omega^2} + j\frac{1}{4} \left\{ \delta(F+F_0) - \delta(F-F_0) \right\} \\ \\ 24. & \cos 2\pi F_0 t & (t) & \longleftrightarrow & \frac{j\Omega}{\Omega_0^2 - \Omega^2} + j\frac{1}{4} \left\{ \delta(F+F_0) + \delta(F-F_0) \right\} \\ \\ 25. & \cos 2\pi F_0 t \cdot u(t) & \longleftrightarrow & \frac{j\Omega}{\Omega_0^2 - \Omega^2} + \frac{1}{4} \left\{ \delta(F+F_0) + \delta(F-F_0) \right\} \\ \\ 26. & \frac{1}{\sqrt{2\pi\sigma^2}} e^{-t^2/2\sigma^2} & \longleftrightarrow & e^{-(\Omega\sigma)^2/2} \\ \\ 27. & e^{-at} \sin 2\pi F_0 t \cdot u(t) & \longleftrightarrow & \frac{\Omega_0}{(j\Omega + a)^2 + (\Omega_0)^2} \\ \\ 28. & e^{-a|t|} \sin 2\pi F_0 t \cdot u(t) & \longleftrightarrow & \frac{2\Omega_0(\Omega_0^2 + a^2 - \Omega_1^2)}{(\Omega^2 + a^2 - \Omega_0^2)^2 + 4a^2\Omega_0^2} \\ \\ 29. & e^{-at} \cos 2\pi F_0 t \cdot u(t) & \longleftrightarrow & \frac{j\Omega + a}{(j\Omega + a)^2 + (\Omega_0)^2} \\ \\ 30. & e^{-a|t|} \cos 2\pi F_0 t & \longleftrightarrow & \frac{2a(\Omega_0^2 + a^2 + \Omega^2)}{(\Omega^2 + a^2 - \Omega_0^2)^2 + 4a^2\Omega_0^2} \\ \\ 31. & rect(at) = \begin{cases} 1 \text{ for } |t| < \frac{1}{2a} \\ 0 \text{ for } f.5. \\ \end{cases} & \longleftrightarrow & \frac{1}{a} \operatorname{sinc}(\frac{F}{a}) \ a > 0 \\ \\ 32. & \operatorname{sinc}(at) = \frac{\sin(\pi at)}{\pi at} & \longleftrightarrow & \frac{1}{a} \operatorname{rect}(\frac{F}{a}) \ a > 0 \\ \\ 33. & \operatorname{rep}_T(w(t)) = \sum_{m=-\infty}^{\infty} w(t - mT) & \longleftrightarrow & \frac{1}{|T|} \operatorname{comb}_{1/T}(W(F)) \\ \\ 34. & |T| \operatorname{comb}_T(w(t)) = \\ & |T| \sum_{m=-\infty}^{\infty} w(mT)\delta(t - mT) & \longleftrightarrow & \sum_{n=-\infty}^{\infty} \frac{T}{t} c_n \delta(F - \frac{T}{t}) = \sum c_n e^{-j2\pi nTF} \\ \end{cases} \end{array}$$

2.3 Z-transformen

2.3.1 Z-transform av kausala signaler

1.	$\mathcal{X}(z) = Z[x(n)] = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$	Transform
2.	$x(n) = Z^{-1}[\mathcal{X}(z)] = \frac{1}{2\pi j} \int_{\Gamma} \mathcal{X}(z) z^{n-1} dz$	Inverstransform
3.	$\sum_{\nu} a_{\nu} x_{\nu}(n) \longleftrightarrow \sum_{\nu} a_{\nu} \mathcal{X}_{\nu}(z)$	Linjäritet
4.	$x(n-n_0) \longleftrightarrow z^{-n_0} \mathcal{X}(z)$	Skift (n_0 positivt eller negativt heltal)
5.	$nx(n) \longleftrightarrow -z \frac{d}{dz} \mathcal{X}(z)$	Multiplikation med n
6.	$a^n x(n) \longleftrightarrow \mathcal{X}\left(\frac{z}{a}\right)$	Skalning
7.	$x(-n) \longleftrightarrow \mathcal{X}\left(\frac{1}{z}\right)$	Spegling av tidsföljden
8.	$\left[\sum_{\ell=-\infty}^{n} x(\ell)\right] \longleftrightarrow \frac{z}{z-1} \ \mathcal{X}(z)$	Summering
9.	$x * y \longleftrightarrow \mathcal{X}(z) \cdot \mathcal{Y}(z)$	Faltning
10.	$x(n) \cdot y(n) \longleftrightarrow \frac{1}{2\pi j} \int_{\Gamma} \mathcal{Y}(\xi) \mathcal{X}\left(\frac{z}{\xi}\right) \xi^{-1} d\xi$	Produkt
11.	$x(0) = \lim_{z \to \infty} \mathcal{X}(z)$ (om gränsvärdet existerar)	${ m Begynnelse} v \ddot{ m ardesteoremet}$
12.	$\lim_{n \to \infty} x(n) = \lim_{z \to 1} (z-1) \mathcal{X}(z)$ (om ROC inkluderar enhetscirkeln)	Slutvärdesteoremet
13.	$\sum_{\ell=-\infty}^{\infty} x(\ell) y(\ell) = \frac{1}{2\pi j} \int_{\Gamma} \mathcal{X}(z) \mathcal{Y}\left(\frac{1}{z}\right) z^{-1} dz$	Parsevals teorem för reellvärda tidsföljder
14.	$\sum_{\ell=-\infty}^{\infty} x^2(\ell) = \frac{1}{2\pi j} \int_{\Gamma} \mathcal{X}(z) \mathcal{X}(z^{-1}) z^{-1} dz$	

2.3.2 Enkelsidig Z-transform av icke kausala signaler

Beteckning

$$\begin{split} \mathcal{X}^+(z) &= \sum_{n=0}^\infty x(n) z^{-n} & \text{Enkelsidig Z-transform, } x(n) \text{ ej} \\ & \text{nödvändigtvis kausal} \\ \mathcal{X}(z) &= \mathcal{X}^+(z) & \text{För kausala signaler} \end{split}$$

Vid skift av x(n) erhålles: i) skift ett steg

$$\begin{array}{rcl} x(n-1) & \longleftrightarrow & z^{-1}\mathcal{X}^+(z) + x(-1) \\ x(n+1) & \longleftrightarrow & z\mathcal{X}^+(z) - x(0) \cdot z \end{array}$$

ii) skift n_0 steg $(n_0 \ge 0)$

$$\begin{array}{rcl} x(n-n_0) & \longleftrightarrow & z^{-n_0} \mathcal{X}^+(z) + x(-1) z^{-n_0+1} + \\ & & + x(-2) z^{-n_0+2} + \ldots + x(-n_0) \\ x(n+n_0) & \longleftrightarrow & z^{n_0} \mathcal{X}^+(z) - x(0) z^{n_0} - x(1) z^{n_0-1} - \ldots - x(n_0-1) z \end{array}$$

2.4 Fouriertransform för tidsdiskret signal

1.	$\begin{split} X(f) &= \mathcal{F}(x(n)) = \\ &= \sum_{\ell = -\infty}^{\infty} x(\ell) e^{-j2\pi f\ell} \omega = 2\pi f \end{split}$		Transform
2.	$\begin{aligned} x(n) &= \int_{-1/2}^{1/2} X(f) e^{j2\pi f n} df = \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega \end{aligned}$		Inverstransform
3.	$\sum a_{\nu} x_{\nu}(n)$	\longleftrightarrow	$\sum_{\nu} a_{\nu} X_{\nu}(f)$ Linjäritet
4.	$x(n-n_0)$	\longleftrightarrow	$X(f) \cdot e^{-j2\pi f n_0}$ Skift
5.	$x(n)e^{j2\pi f_0 n}$	\longleftrightarrow	$X(f - f_0)$ Frekvenstranslation
6.	$x(n) \cdot \cos 2\pi f_0 n$	\longleftrightarrow	$\frac{1}{2} \left[X(f - f_0) + X(f + f_0) \right]$ Modulation
7.	$x(n) \cdot \sin 2\pi f_0 n$	\longleftrightarrow	$\frac{1}{2j} \left[X(f - f_0) - X(f + f_0) \right]$ Modulation
8.	x * y	\longleftrightarrow	$X(f) \cdot Y(f)$ Faltning
9.	$x \cdot y$	\longleftrightarrow	$\int_{-1/2}^{1/2} X(\lambda) \cdot Y(f-\lambda) d\lambda$ Produkt
10.	$\sum_{\ell=-\infty}^{\infty} x(\ell)y(\ell) =$ = $\int_{-1/2}^{1/2} X(f)Y^*(f)df$		Parsevals teorem för reellvärda tidsföljder
11.	$X(f) = \mathcal{X}(e^{j\omega})$		Om $x(n) = 0$ för $n < n_0$ och $\sum_{\ell=-\infty}^{\infty} x(\ell) ^2 < \infty$ (Gäller t.ex.: 18,19,20,21 och 22 i Z-transformtabellen för $ \alpha < 1$)
12.	$\delta(n)$	\longleftrightarrow	1
13.	$\delta(n-n_0)$	\longleftrightarrow	$e^{-j\omega n_0}$
14.	$1 \ \forall n$	\longleftrightarrow	$\sum_{p=-\infty}^{\infty} \delta(f-p)$
15.	u(n)	\longleftrightarrow	$\frac{1}{2}\sum_{p=-\infty}^{\infty}\delta(f-p) + \frac{1}{2} + \frac{1}{j\cdot 2\cdot \tan(\pi f)}$

16.
$$2f_1 \cdot sinc(2f_1 \cdot n) = 2f_1 \frac{\sin(2\pi f_1 n)}{2\pi f_1 n}$$

 $\longleftrightarrow rect_p\left(\frac{f}{2f_1}\right) = \begin{cases} 1 & |f-n| < f_1 < 1/2, n \text{ heltal} \\ 0 & \text{f.ö.} \end{cases}$

Idealt LP-filter

17.
$$4f_1 sinc(2f_1n) \cos(2\pi f_0n)$$

$$\longleftrightarrow rect_p\left(\frac{f-f_0}{2f_1}\right) + rect_p\left(\frac{f+f_0}{2f_1}\right)$$
 Idealt BP-filter

18.
$$\frac{2\pi f_1 n \cos 2\pi f_1 n - \sin 2\pi f_1 n}{\pi n^2}$$

$$\longleftrightarrow (j2\pi f)_p = \begin{cases} j2\pi(f-n) & |f-n| < f_1 < 1/2 , n \text{ heltal} \\ 0 & \text{f.ö.} \end{cases}$$

Deriverande" krets

19.
$$\cos(2\pi f_0 n) \longleftrightarrow \frac{1}{2} \sum_{p=-\infty}^{\infty} [\delta(f - f_0 - p) + \delta(f + f_0 - p)]$$

20.
$$\alpha^{|n|} \longleftrightarrow \frac{1 - \alpha^2}{1 + \alpha^2 - 2\alpha \cos 2\pi f}$$

21.
$$\alpha^{|n|}\cos(2\pi f_0 n)$$

$$\longleftrightarrow \frac{1-\alpha^2}{2} \left[\frac{1}{1+\alpha^2 - 2\alpha \cos 2\pi (f+f_0)} + \frac{1}{1+\alpha^2 - 2\alpha \cos 2\pi (f-f_0)} \right]$$
22. $p_r(n) = \begin{cases} 1 & |n| \le \frac{M-1}{2} \\ 0 & \text{f.ö.} \end{cases} M \text{ udda}$

$$\longleftrightarrow P_r(f) = \frac{\sin(\pi fM)}{\sin(\pi f)}$$
 Rektangulärt fönster

2.5 Fourierserieutveckling

2.5.1 Kontinuerlig tid

En periodisk funktion med perioden T_0 , dv
s $f(t)=f(t-T_0),$ kan uttryckas i en serieutveckling enligt

$$f(t) = \sum_{k=-\infty}^{\infty} c_k \ e^{j2\pi kF_0 t}$$

där

$$c_k = \frac{1}{T_0} \int_{T_0} f(t) e^{-j2\pi k F_0 t} dt \; ; F_0 = \frac{1}{T_0}$$

Om f(t) reell kan detta också uttryckas

$$f(t) = c_0 + 2\sum_{k=1}^{\infty} |c_k| \cos(2\pi k F_0 t + \theta_k) = = a_0 + \sum_{k=1}^{\infty} a_k \cos 2\pi k F_0 t - b_k \sin 2\pi k F_0 t$$

där

$$a_{0} = c_{0} = \frac{1}{T_{0}} \int_{T_{0}} f(t) dt$$

$$a_{k} = 2|c_{k}| \cos \theta_{k} = \frac{2}{T_{0}} \int_{T_{0}} f(t) \cos(2\pi k F_{0} t) dt$$

$$b_{k} = 2|c_{k}| \sin \theta_{k} = \frac{-2}{T_{0}} \int_{T_{0}} f(t) \sin(2\pi k F_{0} t) dt$$

Effekten ges av (Parsevals relation)

$$P = \frac{1}{T_0} \int_{T_0} |f(t)|^2 dt = \sum_{k=-\infty}^{\infty} |c_k|^2$$

För reella signaler gäller också att

$$P = c_0^2 + 2\sum_{k=1}^{\infty} |c_k|^2 = a_0^2 + \frac{1}{2}\sum_{k=1}^{\infty} (a_k^2 + b_k^2)$$

2.5.2 Diskret tid

En periodisk funktion med perioden N, dv
sf(n)=f(n-N),kan uttryckas i en serieutveckling enligt

$$f(n) = \sum_{k=0}^{N-1} c_k \ e^{j2\pi k \ n/N}$$

där

$$c_k = \frac{1}{N} \sum_{n=0}^{N-1} f(n) \ e^{-j2\pi k \ n/N}, \quad k = 0, \dots, N-1$$

Serieutvecklingen betecknas ofta med DTFS (discrete-time Fourier series).

Om f(n) reell kan detta också uttryckas

$$f(n) = c_0 + 2\sum_{k=1}^{L} |c_k| \cos\left(2\pi \frac{kn}{N} + \theta_k\right) =$$
$$= a_0 + \sum_{k=1}^{L} \left(a_k \cos\left(2\pi \frac{kn}{N}\right) - b_k \sin\left(2\pi \frac{kn}{N}\right)\right)$$

där

$$a_0 = c_0$$

$$a_k = 2|c_k|\cos(\theta_k)$$

$$b_k = 2|c_k|\sin(\theta_k)$$

$$L = \begin{cases} \frac{N}{2} & \text{om } N \text{ jämn} \\ \frac{N-1}{2} & \text{om } N \text{ udda} \end{cases}$$

Effekten ges av

$$P = \frac{1}{N} \sum_{n=0}^{N-1} |f(n)|^2 = \sum_{k=0}^{N-1} |c_k|^2$$

och energin över en period ges av

$$E_N = \sum_{n=0}^{N-1} |f(n)|^2 = N \sum_{k=0}^{N-1} |c_k|^2$$

2.6 Diskreta Fouriertransformen (DFT)

2.6.1 Definition

$$X_{k} = DFT(x_{n}) = \sum_{n=0}^{N-1} x_{n} e^{-j2\pi nk/N} \quad k = 0, 1, \dots, N-1 \quad \text{Transform}$$
$$x_{n} = IDFT(X_{k}) = \frac{1}{N} \sum_{k=0}^{N-1} X_{k} e^{j2\pi nk/N} \quad n = 0, 1, \dots, N-1 \quad \text{Inversion}$$

OBS:

$$\sum_{n=0}^{N-1} e^{j2\pi} \frac{k-k_0}{N} \cdot n = N \cdot \delta(k-k_0, (\text{modulo } N))$$

2.6.2 Cirkulär faltning

$$x_n \quad \mathcal{N} \quad y_n = \sum_{\ell=0}^{N-1} x_\ell y_{n-\ell,moduloN} \stackrel{\text{DFT}}{\longleftrightarrow} X_k Y_k \quad \text{Cirkulär faltning}$$

Detta betyder att x_n - och y_n -sekvenserna skall upprepas periodiskt före summationen, dvs utanför intervallet n = 0, 1, ..., N - 1 gäller vid summationen att $x_{n-\ell N} = x_n$ och $y_{n-\ell N} = y_n$ (ℓ = heltal) dvs index beräknas modulo N. Cirkulär faltning betecknas också $x(n) \circledast y(n)$.

2.6.3 Icke-cirkulär faltning med DFT

Om x(n) = 0 för $n \neq [0, L-1]$ och y(n) = 0 för $n \neq [0, M-1]$ så är x * y = 0 för $n \neq [0, N-1]$ där $N \ge L + M - 1$. Faltningen kan beräknas ur

$$x * y = \begin{cases} x \quad (N \quad y = \text{IDFT}(X_k Y_k) \quad n = 0, 1, \dots, N-1 \\ 0 \qquad \qquad \text{f.ö.} \end{cases}$$

där

$$X_k = DFT(x(n))$$

$$Y_k = DFT(y(n))$$

2.6.4 Relation till Fouriertransformen X(f):

$$\begin{split} X(k/N) &= X_k = DFT(x(n)) \text{ om } x(n) = 0 \text{ för } n \neq [0, N-1] \\ X(k/N) &= X_k = DFT(x_p(n)) \text{ allmänt } x(n) \text{ där } x_p(n) = \sum_{\ell=-\infty}^{\infty} x(n-\ell N) \end{split}$$

2.6.5 Relation till Fourierserier

$$X\left(\frac{k}{N}\right) = X_k = DFT(x(n)) = N \cdot c_k$$

om

$$x(n) = x_p(n), \quad 0 \le n \le N - 1$$

där

$$x_p(n) = \sum_{k=0}^{N-1} c_k e^{j2\pi \frac{nk}{N}} \quad -\infty < n < \infty$$

 och

$$c_k = \frac{1}{N} \sum_{n=0}^{N-1} x_p(n) e^{-j2\pi \frac{nk}{N}} \quad k = 0, 1, \dots, N-1$$

2.6.6 Parsevals teorem

$$\sum_{n=0}^{N-1} x(n) y^*(n) = \frac{1}{N} \sum_{k=0}^{N-1} X_k Y^*(k)$$

2.6.7 Några egenskaper hos DFT

(
Tid	Frekvens
x(n), y(n)	X(k), Y(k)
x(n) = x(n+N)	X(k) = X(k+N)
x(N-n)	X(N-k)
$x((n-l))_N$	$X(k)e^{-j2\pi kl/N}$
$x(n)e^{j2\pi ln/N}$	$X((k-l))_N$
$x^*(n)$	$X^*(N-k)$
$x_1(n)$ (N) $x_2(n)$	$X_1(k)X_2(k)$
$x(n)$ (N) $y^*(-n)$	$X(k)Y^*(k)$
$x_1(n)x_2(n)$	$\frac{1}{N} X_1(k)$ (N) $X_2(k)$
$\sum_{n=0}^{N-1} x(n) y^*(n)$	$\frac{1}{N}\sum_{k=0}^{N-1}X(k)Y^{*}(k)$

2.7 Några fönsterfunktioner och deras Fouriertransform

i) Fönsterfunktionerna centrerade kring orig
o(Mudda) dvs funktionerna är skilda från 0 bara för
 $-(M-1)/2 \le n \le (M-1)/2$ Rektangelfönster:

$$w_{rect}(n) = 1$$

 $W_{rect}(f) = M \cdot \frac{\sin(\pi f M)}{M \sin(\pi f)}$

Hanningfönster:

$$w_{hanning}(n) = 0.5 + 0.5 \cos\left(\frac{2\pi n}{M-1}\right)$$

$$W_{hanning}(f) = 0.5 W_{rect}(f) + \\ +0.25 W_{rect} \left(f - \frac{1}{M-1}\right) + \\ +0.25 W_{rect} \left(f + \frac{1}{M-1}\right)$$

Hammingfönster:

$$w_{hamming}(n) = 0.54 + 0.46\cos\left(\frac{2\pi n}{M-1}\right)$$

$$W_{hamming}(n) = 0.54 W_{rect}(f) + \\ +0.23 W_{rect} \left(f - \frac{1}{M-1}\right) + \\ +0.23 W_{rect} \left(f + \frac{1}{M-1}\right)$$

Blackmanfönster:

$$w_{blackman}(n) = 0.42 + 0.5\cos\frac{2\pi n}{M-1} + 0.08\cos\frac{4\pi n}{M-1}$$

$$W_{blackman}(f) = 0.42 W_{rect}(f) + \\ +0.25 W_{rect} \left(f - \frac{1}{M-1}\right) + \\ +0.25 W_{rect} \left(f + \frac{1}{M-1}\right) + \\ +0.04 W_{rect} \left(f - \frac{2}{M-1}\right) + \\ +0.04 W_{rect} \left(f + \frac{2}{M-1}\right)$$

Bartlettfönster (triangelfönster):

$$w_{triangel}(n) = 1 - \frac{|n|}{(M-1)/2}$$
$$W_{triangel}(f) = \frac{M}{2} \left(\frac{\sin\frac{\pi fM}{2}}{\frac{M}{2}\sin(\pi f)}\right)^2 \approx \frac{2}{M} W_{rect}^2\left(\frac{f}{2}\right) \text{ för små } f$$

ii) Fönsterfunktioner definierade för
 $0 \leq n \leq M-1~(M$ udda) Hanning

$$w_{hanning}(n) = 0.5 \left(1 + \cos\frac{2\pi\left(n - \frac{M-1}{2}\right)}{M-1}\right) = 0.5 \left(1 - \cos\left(2\pi\frac{n}{M-1}\right)\right)$$

Hamming

$$w_{hamming}(n) = 0.54 + 0.46 \cos \frac{2\pi \left(n - \frac{M-1}{2}\right)}{M-1} = 0.54 - 0.46 \cos \frac{2\pi n}{M-1}$$

Blackman

$$w_{blackman}(n) = 0.42 + 0.5 \cos \frac{2\pi \left(n - \frac{M-1}{2}\right)}{M-1} + 0.08 \cos \frac{4\pi \left(n - \frac{M-1}{2}\right)}{M-1} = 0.42 - 0.5 \cos \frac{2\pi n}{M-1} + 0.08 \cos \frac{4\pi n}{M-1}$$

Triangelfönster (Bartlett)

$$w_{triangel}(n) = 1 - \frac{\left(n - \frac{M-1}{2}\right)}{\frac{M-1}{2}}$$

3 Sampling av analoga signaler

3.1 Sampling och rekonstruktion

Fouriertransformer

Tidskontinuerlig signal:

Tidsdiskret signal:

$$\begin{cases} X_a(F) = \int_{-\infty}^{\infty} x_a(t) e^{-j2\pi Ft} dt \\ x_a(t) = \int_{-\infty}^{\infty} X_a(F) e^{j2\pi Ft} dF \\ \begin{cases} X(f) = \sum_{n=-\infty}^{\infty} x(n) e^{-j2\pi fn} \\ x(n) = \int_{-1/2}^{1/2} X(f) e^{j2\pi fn} df \end{cases}$$

Samplingsteoremet

För bandbegränsad $x_a(t)$, dv
s $X_a(F) = 0$ för $|F| \ge 1/2T$ gäller

$$x_a(t) = \sum_{n=-\infty}^{\infty} x(n) \ \frac{\sin \ \frac{\pi}{T} \ (t-nT)}{\frac{\pi}{T} \ (t-nT)}$$

Samplingsfrekvens $F_s = 1/T$.

Sampling

$$x(n) = x_a(nT); \quad T = \frac{1}{F_s}$$

$$X(f) = X\left(\frac{F}{F_s}\right) = F_s \sum_{k=-\infty}^{\infty} X_a(F - kF_s)$$

$$\Gamma(f) = \Gamma\left(\frac{F}{F_s}\right) = F_s \sum_{k=-\infty}^{\infty} \Gamma_a(F - kF_s)$$

Rekonstruktion (idealt)

$$x_{a}(t) = \sum_{n=-\infty}^{\infty} x(n) \frac{\sin \frac{\pi}{T} (t - nT)}{\frac{\pi}{T} (t - nT)}$$
$$X_{a}(F) = \frac{1}{F_{s}} X\left(\frac{F}{F_{s}}\right) \quad |F| \le \frac{F_{s}}{2}$$
$$\Gamma_{a}(F) = \frac{1}{F_{s}} \Gamma\left(\frac{F}{F_{s}}\right) \quad |F| \le \frac{F_{s}}{2}$$

Rekonstruktion med sample-and-hold

$$X_{a}(F) = \frac{1}{F_{s}} X\left(\frac{F}{F_{s}}\right) \cdot \frac{\sin(\pi FT)}{\pi FT} e^{-j2\pi F \frac{T}{2}} \cdot H_{LP}(F)$$

$$\Gamma_{a}(F) = \frac{1}{F_{s}} \Gamma\left(\frac{F}{F_{s}}\right) \left|\frac{\sin(\pi FT)}{\pi FT}\right|^{2} \cdot |H_{LP}(F)|^{2}$$

Blockschema över \mathbf{D}/\mathbf{A} omvandling

$$y_a(t) = \sum_{n=-\infty}^{\infty} x(n) \frac{\sin \frac{\pi}{T} (t - nT)}{\frac{\pi}{T} (t - nT)}$$
$$Y_a(F) = \frac{1}{F_s} X\left(\frac{F}{F_s}\right) \quad |F| \le \frac{F_s}{2}$$

Rekonstruktion med sample-and-hold

3.2 Distorsionsmått

3.2.1 Vikningsdistorsion vid sampling

Spektrum efter antivikningsfilter:

 $\Gamma_{in}(F)$

Vikningsdistorstion:

$$D_A = 2 \cdot \int_{F_s - F_p}^{\infty} \Gamma_{in}(F) dF$$

Nyttig signaleffekt:

$$D_s = 2 \int_0^{F_p} \Gamma_{in}(F) dF$$

där $0 \leq F_p \leq F_s/2$

Signaldistorsionsförhållande:

A:
$$SDR_A = \frac{D_S}{D_A} = \frac{\int_0^{F_p} \Gamma_{in}(F) dF}{\int_{F_s - F_p}^{F_p} \Gamma_{in}(F) dF}$$

B: $SDR_A^0 = \min_{|F| \le F_p} \frac{\Gamma_{in}(F)}{\Gamma_{in}(F_s - F)}$

Vid monotont avtagande spektrum blir

$$SDR_A^0 = \frac{\Gamma_{in}(F_p)}{\Gamma_{in}(F_s - F_p)}$$

3.2.2 Periodiseringsdistorsion vid rekonstruktion

Periodiseringsdistorsion:

$$D_P = 2 \cdot \int_{F_s/2}^{\infty} \Gamma_{ut}(F) dF$$

Nyttig signaleffekt:

$$D_S = 2 \cdot \int_0^{F_s/2} \Gamma_{ut}(F) dF$$

Signaldistorsionsförhållande:

A:
$$SDR_P = \frac{D_S}{D_P} = \frac{\int_0^{F_s/2} \Gamma_{ut}(F)dF}{\int_{F_s/2}^{\infty} \Gamma_{ut}(F)dF}$$

B: $SDR_P^0 = \min_{|F| < F_s/2} \frac{\Gamma_{ut}(F)}{\Gamma_{ut}(F_s - F)}$

Ett bra mått ges ofta av

$$SDR_P^0 = \frac{\Gamma_{ut}(F_p)}{\Gamma_{ut}(F_s - F_p)}$$

där ${\cal F}_p$ svarar mot högsta frekvenskomponenten hos den samplade signalen.

3.3 Kvantiseringsdistorsion

$$D_Q \simeq \frac{\Delta^2}{12}$$
linjär kvantisering, Δ litet $SDR_Q = \frac{\text{Signaleffekt}}{D_q}$

Kvantiserings
distorsion vid sinussignal, maximal utstyrning, \boldsymbol{r} bitar

$$SDR_Q = 1.76 + 6 \cdot r[dB]$$

Kvantiseringsdistorsion, utstyrning uttryckt i topp- och RMS-värde, r bitar

$$SDR_Q = 6 \cdot r + 1.76 - 10^{10} \log \left(\frac{A_{peak}}{A_{RMS} \cdot \sqrt{2}}\right)^2 - 10^{10} \log \left(\frac{V}{A_{peak}}\right)^2$$

där $\left[-V,V\right]$ är kvantiserarens utstyrningsområde.

3.4 Decimering och interpolering

Ned
sampling med en faktor ${\cal M}$

$$\downarrow M \quad y(n) = \{\dots u(0), u(M), u(2M) \dots\}$$
$$Y(f) = \frac{1}{M} \sum_{i=0}^{M-1} U\left(\frac{f-i}{M}\right)$$

Uppsampling med en faktor L

$$\uparrow L \quad w(n) = \{ \dots x(0), \underbrace{0, 0, \dots}_{L-1 \text{ st}}, x(1), \underbrace{0, 0, \dots}_{L-1 \text{ st}}, x(2) \dots \}$$
$$W(f) = X(fL)$$

4 Analoga filter

4.1 Filterapproximationer av ideala LP-filter

Allmän form på approximationens amplitudfunktion

$$|H(\Omega)| = \frac{K}{\sqrt{1 + g_N\left(\left(\frac{\Omega}{\Omega_p}\right)^2\right)}} \qquad \Omega = 2\pi F$$

där

$$g_N\left(\left(\frac{\Omega}{\Omega_p}\right)^2\right)\left\{\begin{array}{ll}\ll 1 & \left|\frac{\Omega}{\Omega_p}\right| < 1\\\\\gg 1 & \left|\frac{\Omega}{\Omega_p}\right| > 1\end{array}\right.$$

och Ω_p är filtrets gränsvinkelfrekvens.

Ibland kan det vara lämpligt att normera vinkelfrekvensen med Ω_p . Detta svarar mot att man sätter $\Omega_p = 1$ i detta avsnitt.

4.1.1 Butterworthfilter

$$|H(\Omega)| = \frac{K}{\sqrt{1 + \left(\frac{\Omega}{\Omega_p}\right)^{2N}}}$$

K = amplitudfunktionens maximivärde. K = amplitudfunktionens värde för $\Omega = 0$.

Systemfunktionens nämnare är Butterworthpolynom om $\Omega_p=1.$ Dessa polynom finns i Tabell 2.1. För allmänt Ω_p gäller

$$\mathcal{H}(s) = \frac{K}{\left(\frac{s}{\Omega_p}\right)^N + a_{N-1} \left(\frac{s}{\Omega_p}\right)^{N-1} + \dots + a_1 \left(\frac{s}{\Omega_p}\right) + 1}$$

där a_1, \ldots, a_{N-1} erhålles ur Tabell 4.1.

Tabell 4.1

Koefficienter a_{ν} i Butterworthpolynom $s^{N} + a_{N-1}s^{N-1} + \ldots + a_{1}s + 1$

N	a_1	a_2	a_3	a_4	a_5	a_6	a_7
1							
2	$\sqrt{2}$						
3	2	2					
4	2.613	3.414	2.613				
5	3.236	5.236	5.236	3.236			
6	3.864	7.464	9.141	7.464	3.864		
7	4.494	10.103	14.606	14.606	10.103	4.494	
8	5.126	13.138	21.848	25.691	21.848	13.138	5.126

Tabell 4.2

Faktoriserade Butterworthpolynom för $\Omega_p = 1$. För $\Omega_p \neq 1$ låt $s \to s/\Omega_p$.

N1 (s+1) $(s^2 + \sqrt{2}s + 1)$ 2 $(s^2 + s + 1)(s + 1)$ 3 $(s^{2} + 0.76536s + 1)(s^{2} + 1.84776s + 1)$ 4 $(s+1)(s^2+0.6180s+1)(s^2+1.6180s+1)$ 5 $(s^{2} + 0.5176s + 1)(s^{2} + \sqrt{2}s + 1)(s^{2} + 1.9318s + 1)$ 6 $(s+1)(s^2+0.4450s+1)(s^2+1.2465s+1)(s^2+1.8022s+1)$ $(s^2+0.3896s+1)(s^2+1.1110s+1)(s^2+1.6630s+1)(s^2+1.9622s+1)$ 78

4.1.2 Chebyshevfilter

$$|H(\Omega)| = \frac{K}{\sqrt{1 + \varepsilon^2 T_N^2 \left(\frac{\Omega}{\Omega_p}\right)}}$$

 $\begin{array}{l} \operatorname{Ripple} = 10 \cdot \log(1 + \varepsilon^2) \ \mathrm{dB}. \\ K = \operatorname{amplitudfunktionens} \ \mathrm{maximiv} \ddot{\mathrm{a}} \mathrm{rde}. \\ K \neq \operatorname{amplitudfunktionens} \ \mathrm{v} \ddot{\mathrm{a}} \mathrm{rde} \ \mathrm{f} \ddot{\mathrm{o}} \ \Omega = 0 \ \mathrm{d} \mathring{\mathrm{a}} \ N \ \ddot{\mathrm{a}} \mathrm{r} \ \mathrm{j} \ddot{\mathrm{a}} \mathrm{mn}. \\ T_N(\frac{\Omega}{\Omega_p}) \ \ddot{\mathrm{a}} \mathrm{r} \ \mathrm{Chebyshevpolynom}. \ (\mathrm{Betecknas} \ \ddot{\mathrm{a}} \mathrm{ven} \ \mathrm{med} \ C_N\left(\frac{\Omega}{\Omega_p}\right)). \ \mathrm{Dessa} \ \mathrm{finns} \ \mathrm{i} \ \mathrm{Tabell} \\ 4.3 \ \mathrm{f} \ddot{\mathrm{o}} \mathrm{r} \ \Omega_p = 1. \ \mathrm{F} \ddot{\mathrm{o}} \mathrm{r} \ \Omega_p \neq 1 \ \mathrm{l} \mathring{\mathrm{a}} \mathrm{t} \ \Omega \to \frac{\Omega}{\Omega_p} \ \mathrm{i} \ \mathrm{Tabell} \ 4.3. \end{array}$

Systemfunktionen

$$\mathcal{H}(s) = \frac{K \cdot a_0 \cdot \left\{ \begin{array}{cc} 1 & N \text{ udda} \\ \frac{1}{\sqrt{1+\varepsilon^2}} & N \text{ jämn} \end{array} \right.}{\left(\frac{s}{\Omega_p}\right)^N + a_{N-1} \left(\frac{s}{\Omega_p}\right)^{N-1} + \dots + a_0}$$

där $\varepsilon, a_0, \ldots, a_{N-1}$ erhålles ur Tabell 4.4.

Pollägena till $\mathcal{H}(s)$ finns i Tabell 4.5 för $\Omega_p = 1$. För $\Omega_p \neq 1$ multipliceras pollägena med Ω_p .

Tabell 4.3

Chebyshevpolynom.

$$T_N(\Omega) = \begin{cases} \cos(N \ arccos\Omega) & |\Omega| \le 1\\ \\ \cosh(N \ arccosh\Omega) & |\Omega| \ge 1 \end{cases} \quad \Omega = 2\pi F$$

eller

$$T_N(\Omega) = \frac{\left(\Omega + \sqrt{\Omega^2 - 1}\right)^N + \left(\Omega + \sqrt{\Omega^2 - 1}\right)^{-N}}{2} \quad |\Omega| \ge 1$$

Rekursiv beräkning

$$T_{N+1}(\Omega) = 2\Omega T_N(\Omega) - T_{N-1}(\Omega)$$

N	$T_N(\Omega)$
0	1
1	Ω
2	$2\Omega^2 - 1$
3	$4\Omega^3 - 3\Omega$
4	$8\Omega^4 - 8\Omega^2 + 1$
5	$16\Omega^5 - 20\Omega^3 + 5\Omega$
6	$32\Omega^6 - 48\Omega^4 + 18\Omega^2 - 1$
7	$64\Omega^7 - 112\Omega^5 + 56\Omega^3 - 7\Omega$
8	$128\Omega^8 - 256\Omega^6 + 160\Omega^4 - 32\Omega^2 + 1$
9	$256 \Omega^9 - 576 \Omega^7 + 432 \Omega^5 - 120 \Omega^3 + 9 \Omega$
10	$512\Omega^{10} - 1280\Omega^8 + 1120\Omega^6 - 400\Omega^4 + 50\Omega^2 - 1$

Tabell 4.4. Koefficienterna	a_{ν} i	i Cheb	yshevfilter.
-----------------------------	-------------	--------	--------------

	<u> </u>	<u>`</u>	/		/			
N	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0
1								2.863
2							1.426	1.516
3						1.253	1.535	0.716
4					1.197	1.717	1.025	0.379
5				1.172	1.937	1.309	0.752	0.179
6			1.159	2.172	1.589	1.172	0.432	0.095
7		1.151	2.413	1.869	1.648	0.756	0.282	0.045
8	1.146	2.657	2.149	2.184	1.148	0.573	0.152	0.024
1-dI	3 ripple	$(\varepsilon = 0.$	509, ε^2	= 0.259).			
N	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0
1								1.965
2							1.098	1.102
3						0.989	1.238	0.491
4					0.953	1.454	0.743	0.276
5				0.937	1.689	0.974	0.580	0.123
6			0.928	1.931	1.202	0.939	0.307	0.069
		0.923	2.176	1.429	1.357	0.549	0.214	0.031
8	0.920	2.423	1.655	1.837	0.447	0.448	0.107	0.017
2-dl	3 ripple	$(\varepsilon = 0.$	765, ε^2	= 0.585).			
N	<i>a</i> ₇	a_6	a_5	a_4	a_3	a_2	a_1	<i>a</i> ₀
							0.004	1.307
$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$						0 = 200	0.804	0.823
					0 = 1 0	0.738	1.022	0.327
4					0.716	1.256	0.517	0.206
5			0 - 01	0.705	1.499	0.693	0.459	0.082
6			0.701	1.745	0.867	0.771	0.210	0.051
$\begin{bmatrix} 7 \\ 0 \end{bmatrix}$	0.000	0.698	1.994	1.039	1.144	0.383	0.166	0.020
8	0.696	2.242	1.212	1.579	0.598	0.359	0.073	0.013
3-dE	3^{*} ripp	le ($\varepsilon = 0$	$0.998, \varepsilon$	$x^2 = 0.99$	95).			
N	<i>a</i> ₇	a_6	a_5	a_4	a_3	a_2	a_1	a_0
1								1.002
$\begin{vmatrix} 2 \\ - \end{vmatrix}$							0.645	0.708
3						0.597	0.928	0.251
4					0.581	1.169	0.405	0.177
5				0.575	1.415	0.549	0.408	0.063
6			0.571	1.663	0.691	0.699	0.163	0.044
7		0.568	1.911	0.831	1.052	0.300	0.146	0.016
8	0.567	2.161	0.972	1.467	0.472	0.321	0.056	0.011

^{*)} Tabellen är uträknad för "exakt" 3dB, ej för $20 \cdot \log \sqrt{2} \approx 3.01$ dB. Därav $\varepsilon \neq 1$ och $a_0 \neq 1$ för N = 1.

Tabell 4.5. Pollägen för Chebyshevfilter.

0.5dB ripple ($\varepsilon = 0.349, \ \varepsilon^2 = 0.122$).							
N = 1	2	3	4	5	6	7	8
-2.863	-0.713	-0.626	-0.175	-0.362	-0.078	-0.256	-0.044
	$\pm j1.004$		$\pm j1.016$		$\pm j1.008$		$\pm j1.005$
		-0.313	-0.423	-0.112	-0.212	-0.057	-0.124
		$\pm j1.022$	$\pm j0.421$	$\pm j1.011$	$\pm j0.738$	$\pm j1.006$	$\pm j0.852$
				-0.293	-0.290	± 0.160	-0.186
				$\pm j0.625$	$\pm j0.270$	$\pm j0.807$	$\pm j0.570$
						-0.231	-0.220
						$\pm j0.448$	$\pm j0.200$
1-dB rip	ple ($\varepsilon = 0$.	509, $\varepsilon^2 =$	0.259).				
N = 1	2	3	4	5	6	7	8
-1.965	-0.549	-0.494	-0.139	-0.289	-0.062	-0.205	-0.035
	$\pm j0.895$		$\pm j0.983$		$\pm j0.993$		$\pm j0.996$
		-0.247	-0.337	-0.089	-0.170	-0.046	-0.100
		$\pm j0.966$	$\pm j0.407$	$\pm j0.990$	$\pm j0.727$	$\pm j0.995$	$\pm j0.845$
				-0.234	-0.232	-0.128	-0.149
				$\pm j0.612$	$\pm j0.266$	$\pm j0.798$	$\pm j0.564$
						-0.185	-0.176
						$\pm j0.443$	$\pm j0.198$
2-dB rip	ple ($\varepsilon = 0$.	.765, $\varepsilon^2 =$	0.585).				
N = 1	2	3	4	5	6	7	8
-1.307	-0.402	-0.369	-0.105	-0.218	-0.047	-0.155	-0.026
	$\pm j0.813$		$\pm j0.958$		$\pm j0.982$		$\pm j0.990$
		-0.184	-0.253	-0.067	-0.128	-0.034	-0.075
		$\pm j0.923$	± 0.397	$\pm j0.973$	± 0.719	$\pm j0.987$	$\pm j0.839$
				-0.177	-0.175	-0.097	-0.113
				$\pm j0.602$	$\pm j0.263$	$\pm j0.791$	$\pm j0.561$
						-0.140	-0.133
						$\pm j0.439$	$\pm j0.197$
$3-dB^{*)}$ ri	pple ($\varepsilon =$	$0.998, \ \varepsilon^2 =$	= 0.995).				
N = 1	2	3	4	5	6	7	8
-1.002	-0.322	-0.299	-0.085	-0.177	-0.038	-0.126	-0.021
	$\pm j0.777$		$\pm j0.946$		$\pm j0.976$		± 0.987
		-0.1493	-0.206	-0.055	-0.104	-0.028	-0.061
		$\pm j0.904$	$\pm j0.392$	$\pm j0.966$	± 0.715	$\pm j0.983$	$\pm j0.836$
				-0.144	-0.143	-0.079	-0.092
				$\pm j0.597$	$\pm j0.262$	$\pm j0.789$	$\pm j0.559$
						-0.114	-0.108
						$\pm j0.437$	±j0.196

*) Se anmärkning Tabell 4.4.

4.1.3 Besselfilter

Besselfilter ger en maximalt flat grupplöptid. Koefficienter till Besselpolynom.

n	a_0	a_1	a_2	a_3	a_4	a_5
1	1					
2	3	3				
3	15	15	6			
4	105	105	45	10		
5	945	945	420	105	15	
6	10395	10395	4725	1260	210	21

Rötter till Besselpolynom.

n						
1	-1.0000					
2	-1.5000	$\pm j0.8660$				
3	-2.3222	-1.8389	$\pm j1.7544$			
4	-2.8962	$\pm j0.8672$	-2.1038	$\pm j2.6574$		
5	-3.6467	-3.3520	$\pm j1.7427$	-2.3247	$\pm j3.5710$	
6	-4.2484	$\pm j0.8675$	-3.7357	$\pm j2.6263$	-2.5159	$\pm j4.4927$

Faktoriserade Besselpolynom

n		
1	s+1	1
2	$s^2 + 3s + 3$	3
3	$(s^2 + 3.67782s + 6.45944)(s + 2.32219)$	15
4	$(s^{2} + 5.79242s + 9.14013)(s^{2} + 4.20758s + 11.4878)$	105
5	$(s^{2} + 6.70391s + 14.2725)(s^{2} + 4.64934s + 18.15631)(s + 3.64674)$	945
6	$(s^{2} + 8.49672s + 18.80113)(s^{2} + 7.47142s + 20.85282)$	
	$(s^2 + 5.03186s + 26.51402)$	10395

4.2 Frekvenstransformationer av analoga filter

- 1. Utgå från frekvenserna för kravspecifikationen i det analoga högpass-, bandpass- eller bandspärrfiltret. I det färdiga filtret blir $\Omega_1 \Omega_2 = \Omega_l \Omega_u$.
- 2. Transformera till LP-filtrets frekvenser $\Omega_p = 1, \ \Omega_r.$
- 3. Sök LP-filtrets koefficienter.
- 4. Transformera tillbaka till ursprungsfiltret (HP, BP, BS) genom att byta s i H(s) enligt nedan. För BP, BS transformeras lämpligen polerna direkt om H(s) ska ges faktoriserad i 2:a-gradspolynom. Beräkna eventuellt nytt värde på Ω_1 eller Ω_2 (om $A \neq B$).

Framåt

Bakåt

LP-HP $\Omega'_r = \Omega_u / \Omega_r$ $\Omega_r = \Omega_u / \Omega'_r$

LP-BP
$$\Omega_{av} = (\Omega_u - \Omega_l)/2 \qquad \Omega_r = min(|A|, |B|)$$
$$\Omega_1 = \sqrt{\Omega_r^2 \Omega_{av}^2 + \Omega_l \Omega_u} - \Omega_{av} \Omega_r \qquad A = (-\Omega_1^2 + \Omega_l \Omega_u)/[\Omega_1(\Omega_u - \Omega_l)]$$
$$\Omega_2 = \sqrt{\Omega_r^2 \Omega_{av}^2 + \Omega_l \Omega_u} + \Omega_{av} \Omega_r \qquad B = (+\Omega_2^2 - \Omega_l \Omega_u)/[\Omega_2(\Omega_u - \Omega_l)]$$
$$s_{BP} = S_{LP} \Omega_{av} \pm \sqrt{(S_{LP} \Omega_{av})^2 - \Omega_u \Omega_l}$$

LP-BS
$$\Omega_{av} = (\Omega_u - \Omega_l)/2 \qquad \Omega_r = min(|A|, |B|)$$
$$\Omega_1 = \sqrt{\Omega_{av}^2/\Omega_r^2 + \Omega_l \Omega_u} - \Omega_{av}/\Omega_r \qquad A = \Omega_1(\Omega_u - \Omega_l)/(-\Omega_1^2 + \Omega_l \Omega_u)$$
$$\Omega_2 = \sqrt{\Omega_{av}^2/\Omega_r^2 + \Omega_l \Omega_u} + \Omega_{av}/\Omega_r \qquad B = \Omega_2(\Omega_u - \Omega_l)/(-\Omega_2^2 + \Omega_l \Omega_u)$$
$$s_{BP} = \Omega_{av}/S_{LP} \pm \sqrt{(\Omega_{av}/S_{LP})^2 - \Omega_u \Omega_l)}$$

5 Tidsdiskreta filter

5.1 FIR-filter och IIR-filter

FIR-filter

$$\mathcal{H}(z) = b_0 + b_1 z^{-1} + \ldots + b_M z^{-M}$$
$$h(n) = \begin{cases} b_n & 0 \le n \le M \\ 0 & \text{för övrigt} \end{cases}$$

IIR-filter

$$\mathcal{H}(z) = \frac{b_0 + b_1 z^{-1} + \ldots + b_M z^{-M}}{1 + a_1 z^{-1} + \ldots + a_N z^{-N}}$$

$$h(n) = Z^{-1} \{ \mathcal{H}(z) \}$$

5.2 FIR-filter med fönstermetoden

Impulssvar

$$h(n) = h_d(n) \cdot w(n)$$

med önskad impulssvar $h_d(n)$ och spektrum $H_d(\omega)$ (i $0\leq\omega\leq\pi)$ och tidsfönster w(n)

Lågpass:

$$h_d(n) = \frac{\omega_c}{\pi} \frac{\sin \omega_c \left(n - \frac{M-1}{2}\right)}{\omega_c \left(n - \frac{M-1}{2}\right)}$$
$$H_d(\omega) = \begin{cases} e^{-j\omega (M-1)/2} & |\omega| < \omega_c \\ 0 & \text{för övrigt} \end{cases}$$

Bandpass:

$$h_d(n) = 2\cos\left(\omega_0\left(n - \frac{M-1}{2}\right)\right) \cdot \frac{\omega_c}{\pi} \frac{\sin\omega_c\left(n - \frac{M-1}{2}\right)}{\omega_c\left(n - \frac{M-1}{2}\right)}$$
$$H_d(\omega) = \begin{cases} e^{-j\omega \ (M-1)/2} & \omega_0 - \omega_c < |\omega| < \omega_0 + \omega_c \\ 0 & \text{för övrigt} \end{cases}$$

Högpass:

$$h_d(n) = \delta\left(n - \frac{M-1}{2}\right) - \frac{\omega_c}{\pi} \frac{\sin\omega_c \left(n - \frac{M-1}{2}\right)}{\omega_c \left(n - \frac{M-1}{2}\right)}$$
$$H_d(\omega) = \begin{cases} e^{-j\omega \ (M-1)/2} & |\omega| > \omega_c\\ 0 & \text{för övrigt} \end{cases}$$

Filtrets spektrum $H(\omega) = H_d(\omega) * W(\omega)$ och vid gränsfrekvensen ω_c är dämpningen 6dB.

Vid dimensionering av filter ger nedanstående tabeller en grov approximation av erforderlig längd M.

Tabell 5.1

	Approximativ	Största
Fönster	bredd av	$\operatorname{sidolob}$
	huvudlob	(dB)
Rectangular	$4\pi/M$	-13
Bartlett	$8\pi/M$	-27
Hanning	$8\pi/M$	-32
Hamming	$8\pi/M$	-43
Blackman	$12\pi/M$	-58

Storlek på huvudlob och sidolob för några vanliga fönsterfunktioner.

Tabell 5.2

Storlek på övergångszon och sidolob för några fönsterfunktioner.

Fönster	Övergångszonens	Största sidolob	
	bredd (Hz)	(dB)	
Rektangulärt	0.6/M	-21	
Hamming	1.7/M	-55	
Blackman	3/M	-75	

En bättre approximation erhålles med utnyttjande av sambandet (f litet, M stort)

$$\frac{\sin(\pi fM)}{M\sin(\pi f)} \approx \frac{\sin(\pi fM)}{\pi fM}$$

(f litet, M stort.)

H(f) som funktion av $x = (f - f_c) \cdot M \mod M = 99$, $f_c = 0.1$ för rektangelfönster, hammingfönster och blackmanfönster ges i figuren på nästa sida.

Övergångszon för FIR-filter, konstruerade med fönstermetoden, M = 99 och $f_c = 0.1$. x-axel graderad med $x = (f - f_c)M$. För högpassfilter använd $x = -(f - f_c)M$. Ger en användbar approximation för M > 10. Bättre approximation för stora M. Den lilla figuren visar området runt x = 0.

Filtren konstruerade med Rektangelfönster Hammingfönster Blackmanfönster

5.3 Ekvirippel FIR-filter

Dimensionering av ekviripplefilter enligt Remez algoritmen. Approximativt enligt Kaiser.

$$N = \frac{D_{\infty}(\delta_p, \delta_s)}{\Delta f} + 1$$
$$\Delta f = f_s - f_p$$
$$D_{\infty}(\delta_p, \delta_s) = \frac{-20 \log \sqrt{\delta_p \delta_s} - 13}{14.6}$$

5.4 FIR-filter med minstakvadratmetoden

Minimering av

$$\mathcal{E} = \sum_{n} [x(n) * h(n) - d(n)]^2$$

 ger

$$\sum_{n=0}^{M-1} h(n) r_{xx}(n-\ell) = r_{dx}(\ell) \quad \ell = 0, \dots, M-1$$

 och

$$\mathcal{E}_{\min} = r_{dd}(0) - \sum_{k=0}^{M-1} h(k) r_{dx}(k)$$

där $r_{xx}(\ell)$ är korrelationsfunktionen för x(n) och $r_{dx}(\ell)$ är korskorrelationen mellan d(n) och x(n).

I matrisform kan detta skrivas

$$\mathbf{R}_{xx} \cdot \mathbf{h} = \mathbf{r}_{dx}$$
$$\mathbf{h} = \mathbf{R}_{xx}^{-1} \cdot \mathbf{r}_{dx}$$
$$\mathcal{E}_{\min} = r_{dd}(0) - \mathbf{h}^T \cdot \mathbf{r}_{dx}$$

5.5 IIR-filter

Bestämning av IIR-filter utgående från analoga filter.

5.5.1 Impulsinvarians

$$h(n) = h_a(nT)$$

1.

$$h_a(t) = e^{-\sigma_0 t} \longleftrightarrow \mathcal{H}_a(s) = \frac{1}{s + \sigma_0}$$
$$\Rightarrow \mathcal{H}(z) = \frac{1}{1 - e^{-\sigma_0 T} z^{-1}}$$

2.

$$h_a(t) = e^{-\sigma_0 t} \cos \Omega_0 t \longleftrightarrow \mathcal{H}_a(s) = \frac{s + \sigma_0}{(s + \sigma_0)^2 + \Omega_0^2}$$
$$\Rightarrow \mathcal{H}(z) = \frac{1 - z^{-1} e^{-\sigma_0 T} \cos \Omega_0 T}{1 - 2z^{-1} e^{-\sigma_0 T} \cos \Omega_0 T + z^{-2} e^{-2\sigma_0 T}}$$

3.

$$h_a(t) = e^{-\sigma_0 t} \sin \Omega_0 t \longleftrightarrow \mathcal{H}_a(s) = \frac{\Omega_0}{(s + \sigma_0)^2 + \Omega_0^2}$$
$$\Rightarrow \mathcal{H}(z) = \frac{z^{-1} e^{-\sigma_0 T} \sin \Omega_0 T}{1 - 2z^{-1} e^{-\sigma_0 T} \cos \Omega_0 T + z^{-2} e^{-2\sigma_0 T}}$$

5.5.2 Bilinjär transformation

Frekvenstransformation (prewarp")

$$F_{prewarp} = \frac{1}{T} \frac{\tan(\pi f)}{\pi}$$

Analog filterkonstruktion i variabeln $\Omega_{prewarp}$.

$$\mathcal{H}(z) = \mathcal{H}_a(s) \text{ där } s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}$$

T är en normeringsfaktor (kan oftast väljas =1).

5.5.3 Koefficientkvantisering

Polförflyttning då koefficienterna a_1, \ldots, a_k ändras $\Delta a_1, \ldots, \Delta a_k$

$$\Delta p_i \approx \frac{\partial p_i}{\partial a_1} \ \Delta a_1 + \dots + \frac{\partial p_i}{\partial a_k} \ \Delta a_k$$

Vid normalform (direktform II) gäller

$$\frac{\partial p_i}{\partial a_j} = \underbrace{\frac{-p_i^{k-j}}{(p_i - p_1)(p_i - p_2)\dots(p_i - p_k)}}_{k-1 \text{ st faktorer}}$$

 $\left(p_i-p_i\right)$ skall ej tas med

5.6 Latticefilter

Lattice-ladder

$$A_{0}(z) = B_{0}(z) = 1$$

$$\begin{cases}
A_{m}(z) = A_{m-1}(z) + K_{m}z^{-1}B_{m-1}(z) \\
B_{m}(z) = K_{m}A_{m-1}(z) + z^{-1}B_{m-1}(z)
\end{cases}$$

$$A_{m-1}(z) = \frac{1}{1 - K_m^2} \left(A_m(z) - K_m B_m(z) \right)$$

där

$$A_m(z) = Z\{\alpha_m(n)\} \mod K_m = \alpha_m(m)$$

$$B_m(z) = Z\{\beta_m(n)\}$$

Samband mellan $A_m(z)$ och $B_m(z)$

$$B_m(z) = z^{-m} A_m(z^{-1}) \text{ och}$$

$$\beta_m(k) = \alpha_m(m-k)$$

Lattice-FIR

$$H(z) = A_{M-1}(z)$$

Lattice-all pole IIR

$$H(z) = \frac{1}{A_N(z)}$$

Lattice-ladder

$$H(z) = \frac{C_N(z)}{A_N(z)} = \frac{c_0 + c_1 z^{-1} \dots c_N z^{-N}}{A_N(z)}$$

där

$$C_m(z) = C_{m-1}(z) + v_m B_m(z)$$

 och

$$c_m(m) = v_m \quad m = 0, 1, \dots, N$$

6 Spektralskattning

Spektralskattning

$$\gamma_{xx}(m) = E\{x(n)x(n+m)\}$$
 autokorrelation
 $\Gamma_{xx}(f) = \sum_{m=-\infty}^{\infty} \gamma_{xx} e^{-j2\pi fm}$ effektspektrum

Periodogram

$$r_{xx}(m) = \frac{1}{N} \sum_{n=0}^{N-m-1} x(n) x(n+m) \quad 0 \le m \le N-1 \quad \text{autokorrelation (estimat)}$$
$$P_{xx}(f) = \sum_{m=-N+1}^{N-1} r_{xx}(m) e^{-j2\pi fm} = \frac{1}{N} \left| \sum_{m=0}^{N-1} x(m) e^{-j2\pi fm} \right|^2$$

effektspektrum (estimat)

$$E\{r_{xx}(m)\} = \left(1 - \frac{|m|}{N}\right)\gamma_{xx}(m) \to \gamma_{xx}(m) \text{ då } N \to \infty$$
$$var(r_{xx}(m)) \approx \frac{1}{N}\sum_{n=-\infty}^{\infty} [\gamma_{xx}^2(n) + \gamma_{xx}(n-m)\gamma_{xx}(n+m)] \to 0 \text{ då } N \to \infty$$
$$E\{P_{xx}(f)\} = \int_{-1/2}^{1/2} \Gamma_{xx}(\alpha) W_B(f-\alpha) d\alpha$$

där $W_B(f)$ är Fouriertransformen av Bartlettfönstret $\left(1 - \frac{|m|}{N}\right)$

$$var(P_{xx}(f)) = \Gamma_{xx}^2(f) \left[1 + \left(\frac{sin2\pi fN}{Nsin2\pi f}\right)^2 \right] \to \Gamma_{xx}^2(f) \, \mathrm{d} \mathring{a} \, N \to \infty$$

om x(n) Gaussisk.

Periodogram med DFT:

$$P_{xx}\left(\frac{k}{N}\right) = \frac{1}{N} \left|\sum_{n=0}^{N-1} x(n)e^{-j2\pi \frac{nk}{N}}\right|^2 \quad k = 0, \dots, N-1$$

Medelvärdesbildning av periodogram

Quality factor

$$Q = \frac{[E\{P_{xx}(f)\}]^2}{var(P_{xx}(f))}$$

Relativ varians $\frac{1}{Q}$ $Q \approx$ tid-bandbreddsprodukt.

Periodogram	$\Delta f = \frac{0.9}{M}$	Q = 1	
Bartlett $(N = K \cdot M)$	$\Delta f = \frac{0.9}{M}$	$Q_B = \frac{N}{M}$	Rektangulärt fönster Ingen överlappning
Welch $(N = L \cdot M)$	$\Delta f = \frac{1.28}{M}$	$Q_B = \frac{16}{9} \cdot \frac{N}{M}$	Triangulärt fönster 50% överlappning
$\operatorname{Blackman}/\operatorname{Tukey}$	$\Delta f = \frac{0.6}{M}$	$Q_B = \frac{1}{2} \cdot \frac{N}{M}$	Rektangulärt fönster
	$\Delta f = \frac{0.9}{M}$	$Q_B = \frac{3}{2} \cdot \frac{N}{M}$	Triangulärt fönster

Upplösning Δf beräknad i -3dB punkterna från fönstrets huvudlob.