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Sampling

We will not look closer at sampling, especially the connection between the spectrum
before and after sampling.

x(t) LP A/D Proc. D/A LP y(t)

Sampling Processing Reconstruction

We will show the sampling theorem and the importance of the low pass filters during
sampling and reconstruction.

A signal is read (audio signal is sampled, or pictures in a movie) at a regular interval

t = n · Ts = n · 1
Fs

(1)

where Ts is the time period between each sample and Fs is the sampling rate.

TV frame rate Fs = 50frames/s

CD audio Fs = 44100Hz Studio audio up to 48 kHz.

Telephony Fs = 8000Hz GSM and analog systems.

Rotating spokes on a wheel in a movie sometimes look like they are standing still or
rotating in reverse; why is that?

Sampling

Read a continuous signal Fs times per second:

x(n) = x(t | t = n · Ts = n/Fs) (2)

Read at least two times per period of the signal. If the highest frequency in x(t) is Fmax
then choose the sampling frequency as Fs > 2 · Fmax as we can reconstruct the analog
signal x(t) exactly.

Example

Given:

x(t) = cos(2π400t) (3)

where F0 = 400 and Fs = 1000 gives

x(n) = cos
(
2π · 400

1000
·n

)
= cos(2π0.4n) (4)

But, we also get

x(n) = cos(2π0.4n) = cos(2π(0.4 + k)n) k integer (5)
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because n is an integer. We therefore also get the new frequencies f0 = ±0.4± k where
k is an integer.

The spectrum |X(F)| before sampling:
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The spectrum |X(f )| after sampling:
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Important:

The spectrum of a digital signal is periodic
with the period f = 1 or ω = 2π.

Example of folding distortion

Consider a signal with two cosine terms.

x(t) = cos(2π400t) + 0.5cos(2π800t) (6)

where Fs = 1000 such that

x(n) = cos(2π0.4n) + 0.5cos(2π0.8n) (7)

= cos(2π0.4n) + 0.5cos(2π(−0.2)n) [because of periodicity] (8)

The sampled signal contains the frequencies f0 = ±0.4± k and f1 = ±0.2± k where k is
an integer.

The spectrum before sampling
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The spectrum after sampling:
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Folding distortion yields a “false” frequency at f = ±0.2 corresponding to F = ±200Hz.
For discrete signals in general, a frequency at fi also appears at fi ±1, fi ±2, and so on.

Spectrum for a sampled signal

To express the spectrum of a sampled signal with a formula, we look at the Fourier
transform. If the Fourier transform exists, then we can derive a simple formula for the
spectrum after sampling. The Fourier transform is defined as

X(F) =
∫ ∞
−∞
x(t)e−j2πFt dt (9)

Let x(n) = x(t) where t = n/Fs and change the integral for a sum

X(F) ≈
∞∑

n=−∞
x(n)e−j2π· FFs ·n ·∆t = X(f ) · 1

Fs
(10)

meaning that

X(f ) = X(F) ·Fs (11)

This applies as long as there is no folding distortion.

If we consider that every frequency component in the analog signal appears periodi-
cally in the sampled signal, we can assume that the final formula for the spectrum of
a signal after sampling is

X(f ) = Fs · [. . .+X(F − 2Fs) +X(F −Fs) +X(F) +X(F +Fs) +X(F + 2Fs) + . . .] (12)

= Fs ·
∞∑

k=−∞
X(F − kFs) (13)

This applies if the Fourier transform exists.
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Proof

Compare the spectrum of the analog signal xa(t) and the discrete signal x(n).

Xa(F) =
∫ ∞
−∞
xa(t)e

−j2πFt dt ⇔ xa(t) =
∫ ∞
−∞
Xa(F)e j2πFt dF (14)

X(f ) =
∞∑

n=−∞
x(n)e−j2πf n ⇔ x(n) =

∫ 1
2

− 1
2

X(f )e j2πf ndf (15)

Periodic sampling imposes a relation between t and n of

t = n · Ts =
n
Fs

(16)

If x(n) = xa(n · Ts) = xa(n/Fs) then

x(n) =
∫ 1

2

− 1
2

X(f )e j2πf ndf [ = xa(n/Fs)] (17)

=
∫ ∞
−∞
Xa(F)e j2π· FFs ·ndF (18)

=
∫ 1

2

− 1
2

Fs · ∞∑
k=−∞

Xa((f − k) ·Fs)

 · e j2πf ndf (19)

and

X(f ) = Fs ·
∞∑

k=−∞
Xa((f − k) ·Fs) (20)

which implies that X(f ) is a periodic repetition of Xa(F).

Observer that the spectrum is often a complex function and that the addition is com-
plex addition.

Example with folding distortion and phase addition

When folding occurs, we get a sum of different parts of the analog spectrum. We have
to take the phase of the signals into consideration during this summation.

Assume a signal with a cosine and a sine term.

x(t) = cos(2π400t) + sin(2π600t) (21)

=
1
2
· e j2π400t +

1
2
· e−j2π400t +

1
j2
· e j2π600t − 1

j2
· e−j2π600t (22)
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Sampling with Fs = 1000 yields

x(n) = cos(2π0.4n) + sin(2π0.6n) (23)

=
1
2
· e j2π0.4n +

1
2
· e−j2π0.4n +

1
j2
· e j2π0.6n − 1

j2
· e−j2π0.6n (24)

[
e j2π0.6n = e−j2π0.4n and

1
j2

=
1
2
· e−jπ/2

]
(25)

=
1
2
· e j2π0.4n +

1
2
· e−j2π0.4n +

1
2
· e−jπ/2e−j2π0.4n − 1

2
· e−jπ/2e j2π0.4n (26)

=
1
2
·
(
1− e−j·π/2

)
· e j2π0.4n +

1
2
·
(
1 + e−j·π/2

)
· e−j2π0.4n (27)

=

√
2

2
· e j(2π0.4n+π

4 ) +

√
2

2
· e−j(2π0.4n+π

4 ) (28)

=
√

2 · cos
(
2π0.4n+

π
4

)
(29)

We draw the magnitude spectrum as usual but also note the phases in the figure.

Spectrum before sampling (the analog signal):

−1,500 −1,000 −500 0 500 1,000 1,500

0.2

0.4

0.6

0.8

1

0.5 0.5e jπ/2

Frequency [F]

Spectrum after sampling (the discrete signal):
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How do we do reconstruction and D/A-conversion? (page
387–388, 395–397)

We select the part of the spectrum in the interval

−0.5 < f < 0.5 (30)
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or

−π < ω < π (31)

equivalent to

−Fs
2
< F <

Fs
2

in Hz (32)

using a low pass filter.

y(n) D/A LP y(t)

This is a convolution and in the time domain it becomes (see the appendix and the
end)

y(t) =
∞∑

n=−∞
x(n) ·

sin
(
π
T · (t −nT )

)
π
T · (t −nT )

where n = Fs · t (33)

This is a convolution with the filter hLP(t) where

hLP(t) =
sin

(
π
T · t

)
π
T · t

= T ·
sin

(
π
T · t

)
πt

(34)

is a low pass filter with the gain T and cut-off frequency Fs/2. The spectrum of the
output signal is given by (convolution becomes multiplication)

Y (F) =
1
Fs
·Y (ω) ·HLP(ω) (35)

The sampling theorem states that a signal xa(t) can be sampled and then reconstructed
exactly of the sampling frequency is chosen to be at least twice the highest frequency
component of the signal.

Ideal reconstruction

Select a period of X(ω) using a low pass filter.

y(n) × LP y(t)
T

δ(t −nT )

Analog impulse signal of the discrete signal:
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Low pass filtered signal:
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Reconstruction with sample-and-hold

During ideal reconstruction, the output signal energy is low because the impulses hold
very little energy. We can increase the energy by widening the pulses. If the pulses
are widened to match the sampling period, we get a sample-and-hold or zero-order-hold
system.

We can interpret the sample-and-hold unit as a filter with a rectangular impulse re-
sponse. The result is that the spectrum of the output signal is also multiplied by the
frequency response of this filter.

hSH(t) =

1 0 ≤ t < T
0 otherwise

(36)

The Fourier transform is

HSH(F) = T · sin(πFT )
πFT

· e−j2πFT /2 (37)

and the spectrum of the output signal becomes

Y (F) = Y (ω) ·HSH(F) ·HLP(F) (38)

We therefore introduce a scaling distortion. The error is zero for F = 0 and sin(π/2)/π/2 ≈
0.64 for F = Fs/2.

y(n) × S/H LP y(t)
T

δ(t −nT )

Analog sample-and-hold signal of the discrete signal:
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Low pass filtered signal:
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Interpolation and decimation

Interpolation increases the sample rate of a signal.

x(n) ↑ I y(n) F′s = Fs · I

Decimation reduces the sample rate of a signal.

x(n) ↓D y(n) F′s = Fs/D

Interpolation

Given:

x(n) = sin(2πf0n) =
{
. . . x(−1) x(0) x(1) x(2) . . .

}
where f0 = 0.4 (39)

Find: Y (f ) of the sequence

y(n) =
{
. . . x(−1) 0 x(0) 0 x(1) 0 x(2) . . .

}
(40)

Solution:

y(n) =

x(n/2) for n even
0 otherwise

(41)

Y (ω) =
∑
n

y(n)e−jωn [let n′ = n/2 and n = 2n′] (42)

=
∑
n′
x(n′)e−jω2n′ = X(2ω) (43)

We get a scaling of the frequency axis. One period of Y (ω) corresponds to 2 periods of
X(ω).

Before interpolation:
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After interpolation:
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Therefore, we get

y(n) = sin(2π0.2n) + sin(2π0.3n) (44)

Frequencies after interpolation are

f ′ =
± FFs ± k
I

− 0.5 < f ′ < 0.5 (45)

Decimation

Given:

x(n) = sin(2πf0n) (46)

Find: Y (ω) of the sequence

y(n) = x(n ·D) for D = 4 (47)

Solution:

Y (ω) =
∑
n′
y(n′)e−jω· n′D = X(ω/D) where n′ = n ·D (48)

Assume a sinusoid of 100 Hz is sampled with a frequency of 8000 Hz.

x(n) = sin
(
2π · 1

80
·n

)
(49)

The signal after decimation by D = 4 is

y(n) = x(Dn) = sin
(
2π4 · 1

80
·n

)
= sin

(
2π · 1

20
·n

)
(50)
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The frequency of the sampled signals are fx(n) = ±0.0125± k and fy(n) = ±0.05± k. This
corresponds to 100 Hz i both the sample rate of the input signal and the output signal.

Frequencies after decimation are

f ′ = ± F
Fs
·D ± k (51)

Decimation with folding

Given: Previous example with f0 = 3200Hz and D = 3.

y(n) = x(n ·D) = sin
(
2π3 · 2

5
·n

)
= sin

(
2π · 6

5
·n

)
= sin

(
2π · 1

5
·n

)
(52)

The frequencies of the sampled signals are fx(n) = ±0.0125 ± k and fy(n) = ±0.05 ± k.
This corresponds to 3200 Hz for the input signal but 533 Hz for the output signal due
to folding.

Quantization during A/D-conversion (page 403–408)

The quantization effect:

x(t) = A · sin(ω0t) (53)
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A resolution of b binary bits yields a total of 2b signal levels. If the maximum ampli-
tude is A then the dynamic range becomes 2A.

Quantization resolution:

∆ =
2A
2b

(54)

Quantization error power: The variance of a random variable with a rectangular
probability density function.

Pq =
∆2

12
(55)

Signal power: Sinusoid with amplitude A.

Ps =
A2

2
(56)
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Signal to Quantization noise ratio:

SQNR = 10 · log10
Ps
Pq

= 1.76 + 2b ≈ 6×number of bits [in dB] (57)

Decibel

Decibel [dB] is a logarithmic measure of a power-ratio between a value and a reference.
It can be seen as the gain or attenuation of a system.

gain in dB = 10 · log10

(
output power
input power

)
(58)

The ratio is either:

• A relative power ratio of two signal. For example the power of an input signal
and an output signal.

• An absolute signal power with an implied standardised reference and unit. For
example dBV has a reference of 1 V and dB SPL has a reference of 20 µPa sound
pressure level.

The decibel is always unitless and a relative measure.

Example with a gain

Given: A system with a gain of 2.

x(n) y(n)
2

Find: The system gain in dB.

Solution: Calculate input and output powers.

Pin = E[x(n) · x∗(n)] = σ2
x (59)

Pout = E[y(n) · y∗(n)] = E[2 · x(n) · 2 · x∗(n)] = 4 · σ2
x (60)

gain in dB = 10 · log10

(
4 · σ2

x

σ2
x

)
= 10 · log10

(4
1

)
≈ 6.02dB (61)

A linear gain of 2 corresponds to a gain of approximately 6 dB.

Example with an attenuation

Given: A system with a gain of 1/4.

x(n) y(n)
1/4
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Find: The system gain in dB.

Solution:

gain in dB = 10 · log10

(
σ2
x

16 · σ2
x

)
= 10 · log10

( 1
16

)
≈ −12.04dB (62)

A linear gain of 0.25 corresponds to a gain of approximately −12 dB, or equivalently
an attenuation of 12 dB.

Example with calculating linear gain from decibel

Given: A system with a gain of 3 dB.

x(n) y(n)
3dB = a

Find: The linear gain of the system.

Solution: Solve for the desired linear gain a in

3 = 10 · log10

(
a2

)
(63)

3
10

= log10

(
a2

)
(64)

10
3

10 = a2 ⇒ a ≈
√

2 (65)
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Examples of decibel values

Linear Decibel

1000 60 dB

100 40 dB

10 20 dB

4 12 dB (approximate)

2 6 dB (approximate)
√

2 1.414 3 dB (approximate)

1 0 dB
√

0.5 0.707 −3 dB (approximate)

0.5 −6 dB (approximate)

0.25 −12 dB (approximate)

0.1 −20 dB

0.01 −40 dB

0.001 −60 dB
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