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Linear time invariant systems

Difference equations:

y(n) +
N∑
k=1

aky(n− k) =
M∑
k=0

bkx(n− k) (1)

The z-transform:

Y (z) +
N∑
k=1

akz
−kY (z) =

M∑
k=0

bkz
−kX(z) (2)

Convolution:

y(n) = h(n) ∗ x(n) (3)

=
∑
k

h(k)x(n− k) (4)

The transform of the output signal Y (z) is the product of the transforms of the input
signal X(z) and the filter H(z).

Y (z) =
b0 + b1z

−1 + · · ·+ bMz−M

1 + a1z−1 + · · ·+ aN z−N
·X(z) =H(z)X(z) (5)

We have two kinds of difference equations.

• An FIR system has ak = 0 for all k , 0. An FIR system therefore has no feed-

back. The impulse response is h(n) =
{
b0 b1 · · · bM

}
which is the same as

the coefficients of the difference equation.

• An IIR system has ak , 0 for some k , 0. An IIR system therefore has some
feedback.

We often describe the system equation H(z) with poled and zeros and draw them in a
pole-zero diagram.

Fourier transform

If h(n) is causal and stable we have the identity

H(ω) =H(z) where z = e jω (6)

and therefore

Y (ω) =
b0 + b1e−jω + · · ·+ bMe−jωM

1 + a1e−jω + · · ·+ aNe−jωN ·X(ω) =H(ω)X(ω) (7)

The output signal Y (ω) is the product of the input signal X(ω) and the filterH(ω). The
filter H(ω) is called the frequency response. We often write H(ω) in polar coordinates
and plot the amplitude and the phase of the frequency response.
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Sinusoidal signals and LTI systems

What happens if we filter a sinusoidal signal? We know from experience that if we
filter a sinusoid of a given frequency, then we get a sinusoid with the same frequency
but with a different amplitude and phase. We will examine two cases:

• We start the signal at n = 0. We solve this using the z-transform and partial
fraction expansion.

• We start the signal at n = −∞ so that any initial conditions have dissipated. We
solve this using convolution because the input signal is not causal so we cannot
determine its z-transform.

Numerical solution in Matlab

First determine a numerical solution in Matlab.

Given: The input signal

x(n) = cos
(
2π · 1

16
·n

)
·u(n) (8)

and the system

H(z) =
z−1 − z−2

1− 1.27z−1 + 0.81z−2 (9)

Find: Determine numerically the output signal y(n) = x(n) ∗ h(n).

>> n = 0:60;
>> b = [0, 1, -1];
>> a = [1, -1.27, 0.81];
>> x = cos(2*pi*n/16);
>> y = filter(b, a, x);
>> plot(n, y);
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We get y(n) = transient solution + stationary solution.
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Solution using the z-transform

We start the signal at n = 0:

x(n) = cos(ω0n) ·u(n) where ω0 = 2π · 1
16

(10)

This signal is causal and we can determine its z-transform. The transforms of x(n) and
h(n) are

X(z) =
1− cos(ω0)z−1

1− 2cos(ω0)z−1 + z−2 (11)

and

H(z) =
z−1 − z−2

1− 1.27z−1 + 0.81z−2 =
N (z)
D(z)

(12)

We can now determine the output signal using the z-transform:

Y (z) =H(z)X(z) (13)

=
N (z)
D(z)

· 1− cos(ω0)z−1

1− 2cos(ω0)z−1 + z−2 (14)

=
N1(z)
D(z)

+
C0 +C1z

−1

1− 2cos(ω0)z−1 + z−2 (15)

where the two terms are the transient solution and the stationary solution.

y(n) = transient solution +Acos(ω0n) +Bsin(ω0n) (16)

If we want the whole solution we have to determine the partial fraction expansions
N1(z) and N2(z) = C0 +C1z

−1 and do the inverse z-transforms.

Y (z) =
z−1 − z−2

1− 1.27z−1 + 0.81z−2 ·
1− cos(ω0)z−1

1− 2cos(ω0)z−1 + z−2 (17)

= −0.35 · 1− 4.177z−1

1− 1.27z−1 + 0.81z−2 + 0.35 · 1− 1.896z−1

1− 2cos(ω0)z−1 + z−2 (18)

= −0.35 ·
1− 0.9cos

(
π
4

)
z−1

1− 1.27z−1 + 0.81z−2 (19)

+ 0.35 ·
5.5629 · sin

(
π
4

)
z−1

1− 1.27z−1 + 0.81z−2 (20)

+ 0.35 · 1− cos(ω0)z−1

1− 2cos(ω0)z−1 + z−2 (21)

+ 0.35 ·
(cos(ω0)− 1.896)z−1

1− 2cos(ω0)z−1 + z−2 (22)
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y(n) = −0.35 · 0.9n · cos
(
2π · 1

8
·n

)
+ 0.35 · 5.562 · 0.9n sin

(
2π · 1

8
·n

)
(23)

+ 0.35 · cos(ω0 ·n)− 0.35 · 2.5392 · sin(ω0 ·n) (24)

Plot the solution in Matlab.

>> n = 0:80;
>> yt = -0.35*0.9.^n.*cos(2*pi*n/8) + 0.35*5.562*0.9.^n.*sin(2*pi*n/8);
>> ys = 0.35* cos(2*pi*n/16) - 0.35*2.5392* sin(2*pi*n/16);
>> subplot(3, 1, 1); plot(n, yt);
>> subplot(3, 1, 2); plot(n, ys);
>> subplot(3, 1, 3); plot(n, yt+ys);

The transient solution:
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The stationary solution:
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The output signal as the sum of the stationary and the transient solutions.
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We can see that the input signal x(n) yields the stationary solution

yst(n) = 0.95 · cos(ω0n− 1.19) (25)

We will show that the stationary solution is given by

yst(n) = |H(z0)| · cos(ω0n+ ∠H(z0)) (26)
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where z0 = e jω0 .

A sinusoidal input signal with the frequency ω0 yields a sinusoidal output signal with
the same frequency, but with the amplitude changed by the magnitude of H(z) and
the phase changed by the argument of H(z) for z = e jω0 .

Solution without the transient state

The sinusoid is started at n = −∞ and the transient part of the solution has now dissi-
pated.

We start with a complex sinusoidal signal, see page 301-306.

x0(n) = e jω0n (27)

The input signal is not causal so we use convolution.

y0(n) = x0(n) ∗ h(n) (28)

=
∞∑

k=−∞
h(k)x0(n− k) (29)

=
∞∑

k=−∞
h(k)e jω0(n−k) (30)

=
∞∑

k=−∞
h(k)e−jω0ke jω0n (31)

=H(ω0) · e jω0n (32)

The filter h(n) has to be stable.

For the whole sinusoidal signal, using both terms of Euler’s formula, we get

x(n) = cos(ω0n) =
1
2
·
[
e jω0n + ·e−jω0n

]
=

1
2
·
[
x0(n) + x∗0(n)

]
(33)

which gives us the output signal

y(n) =
1
2
·
[
H(ω0) · e jω0n +H ∗(ω0) · e−jω0n

]
(34)

= |H(ω0)| · cos(ω0n+ ∠H(ω0)) (35)

We can determine and plot the amplitude and the phase for H(ω) using Matlab and
just evaluate the frequency response at ω =ω0.

>> w0 = 2*pi/16;
>> num = exp(-i*w0) - exp(-i*2*w0);
>> den = 1 -1.27* exp(-i*w0 )+0.81* exp(-i*2*w0);
>> H0 = num/den;
>> abs(H0), angle(H0)
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ans =
0.9546

ans =
1.1956

Compare the magnitude and the phase with the stationary solution from before.

yst(n) = 0.95 · cos(ω0n− 1.19) (36)

NOTE: This only applies after any initial conditions have dissipated from the sys-
tem. For an FIR filter of length L, this is after L−1 samples. This is called the stationary
solution, or the steady state solution.

NOTE: This only applies for sinusoidal signals, or for a composite signal (the sum
of two or more sinusoidal signals) by computing the response for each component
individually.

Linear phase

We often want a filter with linear phase.

x(n) H(ω) = A(ω)e jΦ(ω) y(n)

x(n) = sin(ω0n) (37)

y(n) = A(ω0)sin(ω0n+Φ(ω0)) (38)

= A(ω0)sin
(
ω0

(
n+

Φ(ω0)
ω0

))
(39)

If Φ(ω0)/ω0 is constant for all ω0, then Φ(ω) is a straight line in ω. In other words, the
filter has linear phase. A filter with linear phase delays all frequencies by the same
amount. The time

τg = −dΦ(ω)
dω

(40)

is called the group delay.

Example of a filter with linear phase

Given: The impulse response h(n) =
{

1 2 1
}
.

Find: The phase response of H(ω).
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Solution:

H(ω) = 1 + 2e−jω + e−j2ω (41)

= e−jω ·
(
e jω + 2 + e−jω

)
(42)

= e−jω · (2 + 2cos(ω)) (43)

= A(ω) · e jΦ(ω) (44)

Φ(ω) = −ω (45)
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