Lecture 7

Digital Signal Processing

Chapter 5
LTI system
Signals in linear systems

Mikael Swartling Nedelko Grbic Bengt Mandersson

rev. 2016

Linear time invariant systems

Difference equations:

$$
\begin{equation*}
y(n)+\sum_{k=1}^{N} a_{k} y(n-k)=\sum_{k=0}^{M} b_{k} x(n-k) \tag{1}
\end{equation*}
$$

The z-transform:

$$
\begin{equation*}
Y(z)+\sum_{k=1}^{N} a_{k} z^{-k} Y(z)=\sum_{k=0}^{M} b_{k} z^{-k} X(z) \tag{2}
\end{equation*}
$$

Convolution:

$$
\begin{align*}
y(n) & =h(n) * x(n) \tag{3}\\
& =\sum_{k} h(k) x(n-k) \tag{4}
\end{align*}
$$

The transform of the output signal $Y(z)$ is the product of the transforms of the input signal $X(z)$ and the filter $H(z)$.

$$
\begin{equation*}
Y(z)=\frac{b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}}{1+a_{1} z^{-1}+\cdots+a_{N} z^{-N}} \cdot X(z)=H(z) X(z) \tag{5}
\end{equation*}
$$

We have two kinds of difference equations.

- An FIR system has $a_{k}=0$ for all $k \neq 0$. An FIR system therefore has no feedback. The impulse response is $h(n)=\left\{\begin{array}{llll}b_{0} & b_{1} & \cdots & b_{M}\end{array}\right\}$ which is the same as the coefficients of the difference equation.
- An IIR system has $a_{k} \neq 0$ for some $k \neq 0$. An IIR system therefore has some feedback.

We often describe the system equation $H(z)$ with poled and zeros and draw them in a pole-zero diagram.

Fourier transform

If $h(n)$ is causal and stable we have the identity

$$
\begin{equation*}
H(\omega)=H(z) \quad \text { where } z=\mathrm{e}^{\mathrm{j} \omega} \tag{6}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
Y(\omega)=\frac{b_{0}+b_{1} \mathrm{e}^{-\mathrm{j} \omega}+\cdots+b_{M} \mathrm{e}^{-\mathrm{j} \omega M}}{1+a_{1} \mathrm{e}^{-\mathrm{j} \omega}+\cdots+a_{N} \mathrm{e}^{-\mathrm{j} \omega N}} \cdot X(\omega)=H(\omega) X(\omega) \tag{7}
\end{equation*}
$$

The output signal $Y(\omega)$ is the product of the input signal $X(\omega)$ and the filter $H(\omega)$. The filter $H(\omega)$ is called the frequency response. We often write $H(\omega)$ in polar coordinates and plot the amplitude and the phase of the frequency response.

Sinusoidal signals and LTI systems

What happens if we filter a sinusoidal signal? We know from experience that if we filter a sinusoid of a given frequency, then we get a sinusoid with the same frequency but with a different amplitude and phase. We will examine two cases:

- We start the signal at $n=0$. We solve this using the z-transform and partial fraction expansion.
- We start the signal at $n=-\infty$ so that any initial conditions have dissipated. We solve this using convolution because the input signal is not causal so we cannot determine its z-transform.

Numerical solution in Matlab

First determine a numerical solution in Matlab.

Given: The input signal

$$
\begin{equation*}
x(n)=\cos \left(2 \pi \cdot \frac{1}{16} \cdot n\right) \cdot u(n) \tag{8}
\end{equation*}
$$

and the system

$$
\begin{equation*}
H(z)=\frac{z^{-1}-z^{-2}}{1-1.27 z^{-1}+0.81 z^{-2}} \tag{9}
\end{equation*}
$$

Find: Determine numerically the output signal $y(n)=x(n) * h(n)$.

```
>> n = 0:60;
>> b = [0, 1, -1];
>> a = [1, -1.27, 0.81];
>> x = cos(2*pi*n/16);
>> y = filter(b, a, x);
>> plot(n, y);
```


We get $y(n)=$ transient solution + stationary solution.

Solution using the z-transform

We start the signal at $n=0$:

$$
\begin{equation*}
x(n)=\cos \left(\omega_{0} n\right) \cdot u(n) \quad \text { where } \omega_{0}=2 \pi \cdot \frac{1}{16} \tag{10}
\end{equation*}
$$

This signal is causal and we can determine its z-transform. The transforms of $x(n)$ and $h(n)$ are

$$
\begin{equation*}
X(z)=\frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
H(z)=\frac{z^{-1}-z^{-2}}{1-1.27 z^{-1}+0.81 z^{-2}}=\frac{N(z)}{D(z)} \tag{12}
\end{equation*}
$$

We can now determine the output signal using the z-transform:

$$
\begin{align*}
Y(z) & =H(z) X(z) \tag{13}\\
& =\frac{N(z)}{D(z)} \cdot \frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}} \tag{14}\\
& =\frac{N_{1}(z)}{D(z)}+\frac{C_{0}+C_{1} z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}} \tag{15}
\end{align*}
$$

where the two terms are the transient solution and the stationary solution.

$$
\begin{equation*}
y(n)=\text { transient solution }+A \cos \left(\omega_{0} n\right)+B \sin \left(\omega_{0} n\right) \tag{16}
\end{equation*}
$$

If we want the whole solution we have to determine the partial fraction expansions $N_{1}(z)$ and $N_{2}(z)=C_{0}+C_{1} z^{-1}$ and do the inverse z-transforms.

$$
\begin{align*}
Y(z)= & \frac{z^{-1}-z^{-2}}{1-1.27 z^{-1}+0.81 z^{-2}} \cdot \frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}} \tag{17}\\
= & -0.35 \cdot \frac{1-4.177 z^{-1}}{1-1.27 z^{-1}+0.81 z^{-2}}+0.35 \cdot \frac{1-1.896 z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}} \tag{18}\\
= & -0.35 \cdot \frac{1-0.9 \cos \left(\frac{\pi}{4}\right) z^{-1}}{1-1.27 z^{-1}+0.81 z^{-2}} \tag{19}\\
& +0.35 \cdot \frac{5.5629 \cdot \sin \left(\frac{\pi}{4}\right) z^{-1}}{1-1.27 z^{-1}+0.81 z^{-2}} \tag{20}\\
& +0.35 \cdot \frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}} \tag{21}\\
& +0.35 \cdot \frac{\left(\cos \left(\omega_{0}\right)-1.896\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}} \tag{22}
\end{align*}
$$

$$
\begin{align*}
y(n)= & -0.35 \cdot 0.9^{n} \cdot \cos \left(2 \pi \cdot \frac{1}{8} \cdot n\right)+0.35 \cdot 5.562 \cdot 0.9^{n} \sin \left(2 \pi \cdot \frac{1}{8} \cdot n\right) \tag{23}\\
& +0.35 \cdot \cos \left(\omega_{0} \cdot n\right)-0.35 \cdot 2.5392 \cdot \sin \left(\omega_{0} \cdot n\right) \tag{24}
\end{align*}
$$

Plot the solution in Matlab.

```
>> n = 0:80;
>> yt = -0.35*0.9. ^n.*\operatorname{cos(2*pi*n/8) + 0.35*5.562*0.9.^nn.*sin(2*pi*n/8);}
>> ys = 0.35*cos(2*pi*n/16) - 0.35*2.5392*sin(2*pi*n/16);
>> subplot(3, 1, 1); plot(n, yt);
>> subplot(3, 1, 2); plot(n, ys);
>> subplot(3, 1, 3); plot(n, yt+ys);
```

The transient solution:

The stationary solution:

The output signal as the sum of the stationary and the transient solutions.

We can see that the input signal $x(n)$ yields the stationary solution

$$
\begin{equation*}
y_{s t}(n)=0.95 \cdot \cos \left(\omega_{0} n-1.19\right) \tag{25}
\end{equation*}
$$

We will show that the stationary solution is given by

$$
\begin{equation*}
y_{s t}(n)=\left|H\left(z_{0}\right)\right| \cdot \cos \left(\omega_{0} n+\angle H\left(z_{0}\right)\right) \tag{26}
\end{equation*}
$$

where $z_{0}=\mathrm{e}^{\mathrm{j} \omega_{0}}$.
A sinusoidal input signal with the frequency ω_{0} yields a sinusoidal output signal with the same frequency, but with the amplitude changed by the magnitude of $H(z)$ and the phase changed by the argument of $H(z)$ for $z=\mathrm{e}^{\mathrm{j} \omega_{0}}$.

Solution without the transient state

The sinusoid is started at $n=-\infty$ and the transient part of the solution has now dissipated.

We start with a complex sinusoidal signal, see page 301-306.

$$
\begin{equation*}
x_{0}(n)=\mathrm{e}^{\mathrm{j} \omega_{0} n} \tag{27}
\end{equation*}
$$

The input signal is not causal so we use convolution.

$$
\begin{align*}
y_{0}(n) & =x_{0}(n) * h(n) \tag{28}\\
& =\sum_{k=-\infty}^{\infty} h(k) x_{0}(n-k) \tag{29}\\
& =\sum_{k=-\infty}^{\infty} h(k) \mathrm{e}^{\mathrm{j} \omega_{0}(n-k)} \tag{30}\\
& =\sum_{k=-\infty}^{\infty} h(k) \mathrm{e}^{-\mathrm{j} \omega_{0} k} \mathrm{e}^{\mathrm{j} \omega_{0} n} \tag{31}\\
& =H\left(\omega_{0}\right) \cdot \mathrm{e}^{\mathrm{j} \omega_{0} n} \tag{32}
\end{align*}
$$

The filter $h(n)$ has to be stable.
For the whole sinusoidal signal, using both terms of Euler's formula, we get

$$
\begin{equation*}
x(n)=\cos \left(\omega_{0} n\right)=\frac{1}{2} \cdot\left[\mathrm{e}^{\mathrm{j} \omega_{0} n}+\cdot \mathrm{e}^{-\mathrm{j} \omega_{0} n}\right]=\frac{1}{2} \cdot\left[x_{0}(n)+x_{0}^{*}(n)\right] \tag{33}
\end{equation*}
$$

which gives us the output signal

$$
\begin{align*}
y(n) & =\frac{1}{2} \cdot\left[H\left(\omega_{0}\right) \cdot \mathrm{e}^{\mathrm{j} \omega_{0} n}+H^{*}\left(\omega_{0}\right) \cdot \mathrm{e}^{-\mathrm{j} \omega_{0} n}\right] \tag{34}\\
& =\left|H\left(\omega_{0}\right)\right| \cdot \cos \left(\omega_{0} n+\angle H\left(\omega_{0}\right)\right) \tag{35}
\end{align*}
$$

We can determine and plot the amplitude and the phase for $H(\omega)$ using Matlab and just evaluate the frequency response at $\omega=\omega_{0}$.

```
>> w0 = 2*pi/16;
>> num = exp(-i*w0) - exp(-i*2*w0);
>> den = 1-1.27*exp (-i*w0) +0.81*exp(-i*2*w0);
>> HO = num/den;
>> abs(HO), angle(HO)
```

```
ans =
    0.9546
ans =
    1.1956
```

Compare the magnitude and the phase with the stationary solution from before.

$$
\begin{equation*}
y_{s t}(n)=0.95 \cdot \cos \left(\omega_{0} n-1.19\right) \tag{36}
\end{equation*}
$$

NOTE: This only applies after any initial conditions have dissipated from the system. For an FIR filter of length L, this is after $L-1$ samples. This is called the stationary solution, or the steady state solution.

NOTE: This only applies for sinusoidal signals, or for a composite signal (the sum of two or more sinusoidal signals) by computing the response for each component individually.

Linear phase

We often want a filter with linear phase.

$$
x(n) \longrightarrow H(\omega)=A(\omega) \mathrm{e}^{\mathrm{j} \Phi(\omega)} \longrightarrow y(n)
$$

$$
\begin{align*}
x(n) & =\sin \left(\omega_{0} n\right) \tag{37}\\
y(n) & =A\left(\omega_{0}\right) \sin \left(\omega_{0} n+\Phi\left(\omega_{0}\right)\right) \tag{38}\\
& =A\left(\omega_{0}\right) \sin \left(\omega_{0}\left(n+\frac{\Phi\left(\omega_{0}\right)}{\omega_{0}}\right)\right) \tag{39}
\end{align*}
$$

If $\Phi\left(\omega_{0}\right) / \omega_{0}$ is constant for all ω_{0}, then $\Phi(\omega)$ is a straight line in ω. In other words, the filter has linear phase. A filter with linear phase delays all frequencies by the same amount. The time

$$
\begin{equation*}
\tau_{g}=-\frac{\mathrm{d} \Phi(\omega)}{\mathrm{d} \omega} \tag{40}
\end{equation*}
$$

is called the group delay.

Example of a filter with linear phase

Given: The impulse response $h(n)=\left\{\begin{array}{lll}1 & 2 & 1\end{array}\right\}$.

Find: The phase response of $H(\omega)$.

Solution:

$$
\begin{align*}
H(\omega) & =1+2 \mathrm{e}^{-\mathrm{j} \omega}+\mathrm{e}^{-\mathrm{j} 2 \omega} \tag{41}\\
& =\mathrm{e}^{-\mathrm{j} \omega} \cdot\left(\mathrm{e}^{\mathrm{j} \omega}+2+\mathrm{e}^{-\mathrm{j} \omega}\right) \tag{42}\\
& =\mathrm{e}^{-\mathrm{j} \omega} \cdot(2+2 \cos (\omega)) \tag{43}\\
& =A(\omega) \cdot \mathrm{e}^{\mathrm{j} \Phi(\omega)} \tag{44}\\
\Phi(\omega) & =-\omega \tag{45}
\end{align*}
$$

