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Filtering

Input-output relations:

x(n) h(n) y(n) = x(n) ∗ h(n)

X(f ) H(f ) Y (f ) = X(f )H(f )

We can use the convolution operation to determine the output signal.

y(n) = h(n) ∗ x(n) =
∑
k

x(k)h(n− k) (1)

If the Fourier transforms of both the input signal and the output signal exist, then we
can also do

Y (ω) =H(ω)X(ω) (2)

and then calculate the inverse Fourier transform.

We often classify filters according to the characteristic of H(ω).

Filter type Description

Low pass filter Passes low frequencies and stops high frequencies.

High pass filter Passes high frequencies and stops low frequencies.

Band pass filter Passes a limited frequency band.

Band stop filter Stops a limited frequency band.

Relation to the z-transform

We assume a causal impulse response h(n). Causal means that h(n) = 0 for n < 0. The
Fourier transform, DTFT, of the impulse response is then according to the definition:

H(ω) =
∞∑
n=0

h(n)e−jωn (3)

We defined the z-transform of the impulse response as

H(z) =
∞∑
n=0

h(n)z−n (4)

where z = e jω. The Fourier transform is the z-transform evaluated on the unit circle if
h(n) is causal and stable.

H(ω) =H(z | z = e jω)
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The unit circle is the frequency axis in the discrete domain.

z = 0 z = 1z =−1

z = j

z =−j

z = ejπ/4
Point in the z-plane Frequency

z = 1 f = 0 ω = 0

z = j f = 0.25 ω = π/2

z = −1 f = ±0.5 ω = ±π

z = −j f = −0.25 ω = −π/2

z = e jπ/4 f = 0.125 ω = π/4

Expanding the Fourier transform

Cosine (unstable signal):

x(n) = cos(ω0n) =
1
2
·
(
e jω0n + e−jω0n

)
(5)

X(ω) =
1
2
· [δ(ω −ω0) + δ(ω+ω0)] (6)

Sine (unstable signal):

x(n) = sin(ω0n) =
1
2j
·
(
e jω0n − e−jω0n

)
(7)

X(ω) =
1
2j
· [δ(ω −ω0)− δ(ω+ω0)] (8)

Step:

x(n) = u(n) (9)

X(ω) =
1

1− e−jω +
1
2
· δ(ω) (10)

The expressions of X(ω) are valid only for −π < ω < π and have to be made periodic
for other ω.

Filtering with ideal low pass filter

We want to construct a filter that removes the high frequencies and keeps only the low
frequencies.
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x(n) h(n) y(n) = x(n) ∗ h(n)

X(f ) H(f ) Y (f ) = X(f )H(f )

We have

y(n) = h(n) ∗ x(n) =
∑
k

x(k)h(n− k) (11)

and

Y (ω) =H(ω)X(ω) (12)

An ideal low pass filter (non-causal) is defined as

Hideal(ω) =

1 |ω| < ωc
0 otherwise.

(13)

Frequencies less than ωc (the cut-off frequency) are passed through unchanged while
frequencies greater thanωc are blocked entirely. What does the impulse response look
like?

Inverse Fourier transform of a rectangular pulse

The ideal low pass filter is defined by a rectangular pulse. The impulse response is

h(n) =
1

2π
·
∫ π

−π
H(ω)e jωndω (14)

=
1

2π
·
∫ ωc

−ωc
H(ω)e jωndω (15)

=
1

2π
· e

jωcn − e−jωcn

jn
(16)

=
ωc
π
· sin(ωcn)

ωcn
(17)

=
ωc
π
· sinc

(ωc
π
n
)

(18)

which is both non-causal and of infinite duration. We have to truncate it to make it
causal.

Truncation of an ideal low pass filter

A causal low pass FIR filter can be obtained by selecting N values around the origin
and then delay the impulse response by (N − 1)/2 samples (choose N odd).

h(n) =
ωc
π
·

sin
(
ωc

(
n− N−1

2

))
ωc

(
n− N−1

2

) for 0 ≤ n < N (19)
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This is a very common approach to constructing FIR filters. But, how good are the
results and can we improve it?

See the graphs below!

Why do we get problems when truncating?

The impulse response for an ideal low pass filter is of the form sin(x)/x that we have
to truncate in order to obtain a causal filter. The truncation is the cause of the ringing
in the amplitude response of the truncated filter, also called Gibb’s phenomenon.

The condition for convergence of the Fourier transform was:∑
n

|x(n)| <∞ (20)

or ∑
n

|x(n)|2 <∞ if
∑
n

|x(n)| →∞ (21)

For sinc(x) we have∑
n

|sinc(n)| =∞ (22)

but ∑
n

|sinc(n)|2 <∞ (23)

We therefore have the weaker form of convergence. The effect of the weaker conver-
gence is shown when we truncate the filter.
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Ideal low pass filter.
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Ideal low pass filter.
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Hamming window.
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Fourier series expansion of periodic signals

Harmonic composition

We know that any periodic signal can be written as a sum of harmonic sinusoids.

x(n) = A0 +A1 cos(ω0n+Θ1) +A2 cos(2ω0n+Θ2) + · · · (24)

We already know the Fourier transform of a rectangle pulse. See the figures for the
time plot and the spectrum of a pulse with pulse duration 4 and a pulse period of 16.

Make a harmonic signal by repeat the pulse 4 and 16 times. See the figures for the
repeated signals and their spectra and compare with the overlayed spectrum of the
fundamental rectangle pulse.

As the duration of the repeated signal increases (the number of repetitions of the fun-
damental rectangle pulse increases) the energy of the harmonic signal approaches in-
finity. When the signal is infinitely long we can no longer calculate its Fourier trans-
form.

Instead we can describe the signal as a sum of the harmonic components An and Φn
directly related to the Fourier transform of the fundamental pulse.

Analog harmonic signals

An analog signal is periodic if

x(t) = x(t + Tp) (25)

where Tp is the fundamental period and Ω0 = 2π/Tp is the fundamental frequency of
the signal. The period Tp is chosen as the smallest possible period. The periodic signal
can be rewritten as a sum of sinusoids as

x(t) =
1
Tp
·
∞∑

k=−∞
X(k ·Ω0)e jΩ0·kt (26)

=
1
Tp
·X(0) +

2
Tp
·
∞∑
k=1

|X(k ·Ω0)| · cos(Ω · kt + ∠X(k ·Ω0)) (27)

where X(Ω) is the Fourier transform of the fundamental period of the signal defined
earlier as

X(Ω) =
∫ Tp

2

−Tp
2

x(t)e−jΩt dt (28)

Discrete harmonic signals

A discrete signal can also be composed from harmonic components. Periodicity is
defined as

x(n) = x(n+N ) (29)
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where N is the fundamental period and ω0 = 2π/N is the fundamental frequency of
the signal. A periodic signal can be composed by sinusoids as

x(n) =
1
N
·
N−1∑
k=0

X(k ·ω0)e jω0·kn (30)

where

X(ω) =
N−1∑
n=0

x(n)e−jωn (31)
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Rectangle pulse:
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