Lecture 4

Digital Signal Processing

Chapter 3
z-transforms

Mikael Swartling Nedelko Grbic Bengt Mandersson

rev. 2016^{1}

Department of Electrical and Information Technology
Lund University

[^0]
z-transform

We defined the z-transform of the impulse response $h(n)$ as

$$
\begin{equation*}
H(z)=\sum_{n=-\infty}^{\infty} h(n) z^{-n}=\sum_{n=0}^{\infty} h(n) z^{-n} \tag{1}
\end{equation*}
$$

where $h(n)=0$ for $n<0$ and where $z=r \mathrm{e}^{\mathrm{j} \omega}$.
We used the z-transform on the second order difference equation

$$
\begin{equation*}
y(n)-1.27 y(n-1)+0.81 y(n-2)=x(n-1)-x(n-2) \tag{2}
\end{equation*}
$$

with the z-transform

$$
\begin{equation*}
Y(z)-1.27 z^{-1} Y(z)+0.81 z^{-2} Y(z)=z^{-1} X(z)-z^{-2} X(z) \tag{3}
\end{equation*}
$$

This gave us

$$
\begin{equation*}
Y(z)=\frac{z^{-1}-z^{-2}}{1-1.27 z^{-1}+0.81 z^{-2}} \cdot X(z)=H(z) X(z) \tag{4}
\end{equation*}
$$

We will now continue with this example.

Poles and zeros

From the difference equation we can always get $H(z)$ which is a ratio of two polynomials in z^{-1}. We want to analyze this ratio by factorizing $H(z)$.

$$
\begin{align*}
H(z) & =\frac{B(z)}{A(z)} \tag{5}\\
& =\frac{z^{-1}-z^{-2}}{1-1.27 z^{-1}+0.81 z^{-2}} \tag{6}\\
& =\frac{z-1}{z^{2}-1.27 z+0.81} \tag{7}
\end{align*}
$$

Finding the roots to the denominator polynomial

$$
\begin{equation*}
z^{2}-1.27 z+0.81=0 \tag{8}
\end{equation*}
$$

gives us roots in

$$
\begin{align*}
z & =\frac{1.27}{2} \pm \sqrt{\left(\frac{1.27}{2}\right)^{2}-0.81} \tag{9}\\
& =0.64 \pm \mathrm{j} 0.64 \tag{10}\\
& =0.9 \mathrm{e}^{ \pm \mathrm{j} \frac{\pi}{4}} \tag{11}
\end{align*}
$$

Finding the roots to the numerator polynomial

$$
\begin{equation*}
z-1=0 \quad \rightarrow \quad z=1 \tag{12}
\end{equation*}
$$

The factoring of $H(z)$ can now be written as

$$
\begin{align*}
H(z) & =\frac{z^{-1}-z^{-2}}{1-1.27 z^{-1}+0.81 z^{-2}} \tag{13}\\
& =\frac{z-1}{z^{2}-1.27 z+0.81} \tag{14}\\
& =\frac{z-1}{\left(z-0.9 \mathrm{e}^{\mathrm{j} \frac{\pi}{4}}\right)\left(z-0.9 \mathrm{e}^{-\mathrm{j} \frac{\pi}{4}}\right)} \tag{15}
\end{align*}
$$

The roots of the numerator polynomial are called zeros and roots to the denominator polynomial are called poles. We draw the poles and the zeros in a complex number plane called a pole-zero diagram where poles are marked by \times and zeros are marked by o.

Poles:

$$
\begin{equation*}
p_{1,2}=0.9 \mathrm{e}^{ \pm \frac{\pi}{4}} \tag{16}
\end{equation*}
$$

Zeros:

$$
\begin{equation*}
z_{1}=1 \tag{17}
\end{equation*}
$$

Pole-zero diagram:

Filter response	When. .
$\|H(z)\|=0$	z is a zero.
$\|H(z)\|=\infty$	z is a pole.
$\|H(z)\| \approx 0$	z is close to a zero.
$\|H(z)\| \gg 1$	z is close to a pole.

Describing a system by poles and zeros is very useful.

Determine $H(\omega)$ from the pole-zero plot (page 315-320)

The frequency response $H(\omega)$ is determined by the location of the poles and zeros relative to the unit circle.

Define the units $U_{n}=\mathrm{e}^{\mathrm{j} \omega_{0}}-p_{n}$ and $V_{n}=\mathrm{e}^{\mathrm{j} \omega_{0}}-z_{n}$ for some frequency ω_{0}. The units corresponds to the vectors from the poles or the zeros, respectively, to the point on the unit circle corresponding to the frequency ω_{0}.

The amplitude response is:

$$
\begin{equation*}
\left|H\left(\omega_{0}\right)\right|=\frac{\prod\left|V_{n}\right|}{\prod\left|U_{n}\right|}=\frac{\left|V_{1}\right|}{\left|U_{1}\right| \cdot\left|U_{2}\right|} \tag{18}
\end{equation*}
$$

The phase response is:

$$
\begin{equation*}
\angle H\left(\omega_{0}\right)=\sum \angle V_{n}-\sum \angle U_{n}=\angle V_{1}-\angle U_{1}-\angle U_{2}=\alpha_{1}-\beta_{1}-\beta_{2} \tag{19}
\end{equation*}
$$

z-transform of second order system

Second order system with complex roots..
Sine

$$
\begin{align*}
h(n) & =r^{n} \cdot \sin (\omega n) u(n) \tag{20}\\
& =r^{n} \cdot \frac{1}{2 \mathrm{j}} \cdot\left(\mathrm{e}^{\mathrm{j} \omega n}-\mathrm{e}^{-\mathrm{j} \omega n}\right) u(n) \tag{21}\\
H(z) & =\frac{1}{2 \mathrm{j}} \cdot\left(\frac{1}{1-r \mathrm{e}^{\mathrm{j} \omega} z^{-1}}-\frac{1}{1-r \mathrm{e}^{-\mathrm{j} \omega} z^{-1}}\right) \tag{22}\\
& =\frac{r \sin (\omega) z^{-1}}{1-2 r \cos (\omega) z^{-1}+r^{2} z^{-2}} \tag{23}
\end{align*}
$$

Cosine

$$
\begin{align*}
h(n) & =r^{n} \cdot \cos (\omega n) u(n) \tag{24}\\
& =r^{n} \cdot \frac{1}{2} \cdot\left(\mathrm{e}^{\mathrm{j} \omega n}+\mathrm{e}^{-\mathrm{j} \omega n}\right) u(n) \tag{25}\\
H(z) & =\frac{1}{2} \cdot\left(\frac{1}{1-r \mathrm{e}^{\mathrm{j} \omega} z^{-1}}+\frac{1}{1-r \mathrm{e}^{-\mathrm{j} \omega} z^{-1}}\right) \tag{26}\\
& =\frac{1-r \cos (\omega) z^{-1}}{1-2 r \cos (\omega) z^{-1}+r^{2} z^{-2}} \tag{27}
\end{align*}
$$

Example

We had

$$
\begin{align*}
H(z) & =\frac{z^{-1}-z^{-2}}{1-1.27 z^{-1}+0.81 z^{-2}} \tag{28}\\
& =z^{-1} \cdot \frac{1-z^{-1}}{1-1.27 z^{-1}+0.81 z^{-2}} \tag{29}
\end{align*}
$$

Now determine $h(n)$, the inverse z-transform of $H(z)$, with the help of the transforms for the sine and the cosine. Rewrite $H(z)$ so that we can identify the sine and cosine terms.

$$
\begin{equation*}
H(z)=z^{-1} \cdot \frac{1-z^{-1}}{1-1.27 z^{-1}+0.81 z^{-2}} \tag{30}
\end{equation*}
$$

Identify $1.27=2 r \cos \left(\omega_{0}\right)$ and $0.81=r^{2}$. Therefore $\omega_{0}=\pi / 4$ and $r=0.9$.

$$
\begin{equation*}
H(z)=z^{-1} \cdot \frac{1-r \cos \left(\omega_{0}\right) z^{-1}+\left(r \cos \left(\omega_{0}\right) z^{-1}-z^{-1}\right) \cdot \frac{r \sin \left(\omega_{0}\right)}{r \sin \left(\omega_{0}\right)}}{1-1.27 z^{-1}+0.81 z^{-2}} \tag{31}
\end{equation*}
$$

The transforms for the sine and the cosine now gives

$$
\begin{align*}
h(n) & =r^{n-1} \cdot\left[\cos \left(\omega_{0} \cdot(n-1)\right)+\frac{r \cos \left(\omega_{0}\right)-1}{r \sin \left(\omega_{0}\right)} \cdot \sin \left(\omega_{0} \cdot(n-1)\right)\right] \cdot u(n-1) \tag{32}\\
& =0.9^{n-1} \cdot\left[\cos \left(\frac{\pi}{4} \cdot(n-1)\right)-0.57 \sin \left(\frac{\pi}{4} \cdot(n-1)\right)\right] \cdot u(n-1) \tag{33}
\end{align*}
$$

Stability

A system is stable of an input signal of limited amplitude yields an output signal that is also of limited amplitude. This is called BIBO-stability (bounded input, bounded output). A sufficient requirement is that

$$
\begin{equation*}
\sum_{n}|h(n)|<\infty \tag{34}
\end{equation*}
$$

This is equivalent to all poles being inside the unit circle in the pole-zero diagram.

FIR-filter

FIR filters have all their poles at the origin and are always BIBO-stable: $h(n)$ has a finite duration and $\sum_{n}|h(n)|$ is always limited.

First order IIR-filter

$$
\begin{equation*}
H(z)=\frac{1}{1-a z^{-1}} \quad \Leftrightarrow \quad h(n)=a^{n} u(n) \tag{35}
\end{equation*}
$$

Pole in $p_{1}=a$.

Stable if $|a|<1$, or equivalently if the pole lies inside the unit circle.

Second order IIR-filter

$$
\begin{align*}
H(z) & =\frac{1}{\left(1-p_{1} z^{-1}\right)\left(1-p_{2} z^{-1}\right)} \tag{36}\\
& =\frac{z^{2}}{\left(z-p_{1}\right)\left(z-p_{2}\right)} \tag{37}\\
& =\frac{1}{1-\left(p_{1}+p_{2}\right) z^{-1}+p_{1} p_{2} z^{-2}} \tag{38}
\end{align*}
$$

We split the problem into two cases.

Real poles:

$$
\begin{align*}
H(z) & =\frac{1}{\left(1-p_{1} z^{-1}\right)\left(1-p_{2} z^{-1}\right)} \tag{39}\\
& =\frac{A}{1-p_{1} z^{-1}}+\frac{B}{1-p_{2} z^{-1}} \tag{40}\\
h(n) & =\left(A p_{1}^{n}+B p_{2}^{n}\right) \cdot u(n) \tag{41}
\end{align*}
$$

Stable if $\left|p_{1}\right|<1$ and $\left|p_{2}\right|<1$.
Complex conjugated poles: Two poles where $p_{1,2}=r \mathrm{e}^{ \pm \mathrm{j} \omega_{0}}$:

$$
\begin{align*}
H(z) & =\frac{1}{\left(1-p_{1} z^{-1}\right)\left(1-p_{2} z^{-1}\right)} \tag{42}\\
& =\frac{1}{1-\left(p_{1}+p_{2}\right) z^{-1}+p_{1} p_{2} z^{-2}} \tag{43}\\
& =\frac{1}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}} \tag{44}
\end{align*}
$$

Stable if $\left|p_{1}\right|<1$ and $\left|p_{2}\right|<1$, or equivalently if $|r|<1$.

Pole-zero diagrams and impulse responses

Exponentially decaying step

Exponentially increasing step

Damped oscillator

Unstable oscillator

Some comments on stability

- FIR-filter have all their poles at the origin.
- FIR-filter are always stable in the sense that a limited input signal can never yield an output signal that is unlimited in amplitude.
- IIR-filter does not have all their poles at the origin.
- IIR-filter are stable only if all their poles lie within the unit circle.

Analog $H(s)$ and discrete $H(z)$

Analog: Stable if all poles are in the left half-plane.

$$
\begin{equation*}
H(s)=\int_{t} h(t) \mathrm{e}^{-s t} \mathrm{~d} t \tag{45}
\end{equation*}
$$

Discrete: Stable if all poles lie within the unit circle.

$$
\begin{equation*}
H(z)=\sum_{n} h(n) z^{-n} \tag{46}
\end{equation*}
$$

where $z \sim \mathrm{e}^{s}$.

Example

$$
\begin{align*}
& p_{\text {analog }}=-0.5 \pm 0.5 \mathrm{j} \tag{47}\\
& p_{\text {digital }} \sim \mathrm{e}^{-0.5 \pm \mathrm{j} 0.5} \tag{48}\\
&=\mathrm{e}^{-0.5} \mathrm{e}^{ \pm \mathrm{j} 0.5} \tag{49}\\
&=0.6 \mathrm{e}^{ \pm \mathrm{j} 0.16 \pi} \tag{50}\\
& s=\sigma+\mathrm{j} \Omega \quad \Leftrightarrow \quad z=r \cdot \mathrm{e}^{\mathrm{j} \omega} \tag{51}
\end{align*}
$$

Solving general differential equations

$$
\begin{align*}
& y(n)+\sum_{k=1}^{N} a_{k} y(n-k)=\sum_{k=0}^{M} b_{k} x(n-k) \tag{52}\\
& Y(z)+\sum_{k=1}^{N} a_{k} z^{-k} Y(z)=\sum_{k=0}^{M} b_{k} z^{-k} X(z) \tag{53}\\
& Y(z)=\frac{b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}}{1+a_{1} z^{-1}+\cdots+a_{N} z^{-N}} \cdot X(z) \tag{54}\\
& \quad=b_{0} \cdot \frac{z^{-M}}{z^{-N}} \cdot \frac{\left(z-z_{1}\right) \cdots\left(z-z_{M}\right)}{\left(z-p_{1}\right) \cdots\left(z-p_{N}\right)} \cdot X(z)=H(z) X(z) \tag{55}
\end{align*}
$$

where z_{i} are the zeros (roots to the numerator polynomial) and p_{i} are the poles (roots to the denominator polynomial). Inverse transform $Y(z)$ by partial fraction expansion and the solution is given by the resulting $y(n)$.

[^0]: ${ }^{1}$ Update of pole-zero table below eq. (17) on 2021-03-30 - Ove Edfors

