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z-transform

We defined the z-transform of the impulse response h(n) as

H(z) =
∞∑

n=−∞
h(n)z−n =

∞∑
n=0

h(n)z−n (1)

where h(n) = 0 for n < 0 and where z = re jω.

We used the z-transform on the second order difference equation

y(n)− 1.27y(n− 1) + 0.81y(n− 2) = x(n− 1)− x(n− 2) (2)

with the z-transform

Y (z)− 1.27z−1Y (z) + 0.81z−2Y (z) = z−1X(z)− z−2X(z) (3)

This gave us

Y (z) =
z−1 − z−2

1− 1.27z−1 + 0.81z−2 ·X(z) =H(z)X(z) (4)

We will now continue with this example.

Poles and zeros

From the difference equation we can always get H(z) which is a ratio of two polyno-
mials in z−1. We want to analyze this ratio by factorizing H(z).

H(z) =
B(z)
A(z)

(5)

=
z−1 − z−2

1− 1.27z−1 + 0.81z−2 (6)

=
z − 1

z2 − 1.27z+ 0.81
(7)

Finding the roots to the denominator polynomial

z2 − 1.27z+ 0.81 = 0 (8)

gives us roots in

z =
1.27

2
±

√(1.27
2

)2
− 0.81 (9)

= 0.64± j0.64 (10)

= 0.9e±jπ4 (11)

Finding the roots to the numerator polynomial

z − 1 = 0 → z = 1 (12)
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The factoring of H(z) can now be written as

H(z) =
z−1 − z−2

1− 1.27z−1 + 0.81z−2 (13)

=
z − 1

z2 − 1.27z+ 0.81
(14)

=
z − 1(

z − 0.9e jπ4
)(
z − 0.9e−jπ4

) (15)

The roots of the numerator polynomial are called zeros and roots to the denominator
polynomial are called poles. We draw the poles and the zeros in a complex number
plane called a pole-zero diagram where poles are marked by × and zeros are marked by
◦.

Poles:

p1,2 = 0.9e±jπ4 (16)

Zeros:

z1 = 1 (17)

Pole-zero diagram:

Filter response When. . .

|H(z)| = 0 z is a zero.

|H(z)| =∞ z is a pole.

|H(z)| ≈ 0 z is close to a zero.

|H(z)| � 1 z is close to a pole.

Describing a system by poles and zeros is very useful.

Determine H(ω) from the pole-zero plot (page 315–320)

The frequency response H(ω) is determined by the location of the poles and zeros
relative to the unit circle.

Define the units Un = e jω0 − pn and Vn = e jω0 − zn for some frequency ω0. The units
corresponds to the vectors from the poles or the zeros, respectively, to the point on the
unit circle corresponding to the frequency ω0.
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The amplitude response is:

|H(ω0)| =
∏
|Vn|∏
|Un|

=
|V1|

|U1| · |U2|
(18)

The phase response is:

∠H(ω0) =
∑
∠Vn −

∑
∠Un = ∠V1 − ∠U1 − ∠U2 = α1 − β1 − β2 (19)

z-transform of second order system

Second order system with complex roots..

Sine

h(n) = rn · sin(ωn)u(n) (20)

= rn · 1
2j
·
(
e jωn − e−jωn

)
u(n) (21)

H(z) =
1
2j
·
( 1
1− re jωz−1

− 1
1− re−jωz−1

)
(22)

=
r sin(ω)z−1

1− 2r cos(ω)z−1 + r2z−2 (23)

Cosine

h(n) = rn · cos(ωn)u(n) (24)

= rn · 1
2
·
(
e jωn + e−jωn

)
u(n) (25)

H(z) =
1
2
·
( 1
1− re jωz−1

+
1

1− re−jωz−1

)
(26)

=
1− r cos(ω)z−1

1− 2r cos(ω)z−1 + r2z−2 (27)
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Example

We had

H(z) =
z−1 − z−2

1− 1.27z−1 + 0.81z−2 (28)

= z−1 · 1− z−1

1− 1.27z−1 + 0.81z−2 (29)

Now determine h(n), the inverse z-transform of H(z), with the help of the transforms
for the sine and the cosine. Rewrite H(z) so that we can identify the sine and cosine
terms.

H(z) = z−1 · 1− z−1

1− 1.27z−1 + 0.81z−2 (30)

Identify 1.27 = 2r cos(ω0) and 0.81 = r2. Therefore ω0 = π/4 and r = 0.9.

H(z) = z−1 ·
1− r cos(ω0)z−1 +

(
r cos(ω0)z−1 − z−1

)
· r sin(ω0)
r sin(ω0)

1− 1.27z−1 + 0.81z−2 (31)

The transforms for the sine and the cosine now gives

h(n) = rn−1 ·
[
cos(ω0 · (n− 1)) +

r cos(ω0)− 1
r sin(ω0)

· sin(ω0 · (n− 1))
]
·u(n− 1) (32)

= 0.9n−1 ·
[
cos

(π
4
· (n− 1)

)
− 0.57sin

(π
4
· (n− 1)

)]
·u(n− 1) (33)
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Stability

A system is stable of an input signal of limited amplitude yields an output signal that
is also of limited amplitude. This is called BIBO-stability (bounded input, bounded
output). A sufficient requirement is that∑

n

|h(n)| <∞ (34)

This is equivalent to all poles being inside the unit circle in the pole-zero diagram.

FIR-filter

FIR filters have all their poles at the origin and are always BIBO-stable: h(n) has a
finite duration and

∑
n |h(n)| is always limited.
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First order IIR-filter

H(z) =
1

1− az−1 ⇔ h(n) = anu(n) (35)

Pole in p1 = a.

Stable if |a| < 1, or equivalently if the pole lies inside the unit circle.

Second order IIR-filter

H(z) =
1

(1− p1z−1) (1− p2z−1)
(36)

=
z2

(z − p1) (z − p2)
(37)

=
1

1− (p1 + p2)z−1 + p1p2z−2 (38)

We split the problem into two cases.

Real poles:

H(z) =
1

(1− p1z−1) (1− p2z−1)
(39)

=
A

1− p1z−1 +
B

1− p2z−1 (40)

h(n) = (Apn1 +Bpn2) ·u(n) (41)
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Stable if |p1| < 1 and |p2| < 1.

Complex conjugated poles: Two poles where p1,2 = re±jω0 :

H(z) =
1

(1− p1z−1) (1− p2z−1)
(42)

=
1

1− (p1 + p2)z−1 + p1p2z−2 (43)

=
1

1− 2r cos(ω0)z−1 + r2z−2 (44)

Stable if |p1| < 1 and |p2| < 1, or equivalently if |r | < 1.

Pole-zero diagrams and impulse responses

Exponentially decaying step
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Exponentially increasing step
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Some comments on stability

• FIR-filter have all their poles at the origin.

• FIR-filter are always stable in the sense that a limited input signal can never yield
an output signal that is unlimited in amplitude.
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• IIR-filter does not have all their poles at the origin.

• IIR-filter are stable only if all their poles lie within the unit circle.

Analog H(s) and discrete H(z)

Analog: Stable if all poles are in the left half-plane.

H(s) =
∫
t
h(t)e−st dt (45)

Discrete: Stable if all poles lie within the unit circle.

H(z) =
∑
n

h(n)z−n (46)

where z ∼ es.

Example

panalog = −0.5± 0.5j (47)

pdigital ∼ e−0.5±j0.5 (48)

= e−0.5e±j0.5 (49)

= 0.6e±j0.16π (50)

s = σ + jΩ ⇔ z = r · e jω (51)

Solving general differential equations

y(n) +
N∑
k=1

aky(n− k) =
M∑
k=0

bkx(n− k) (52)

Y (z) +
N∑
k=1

akz
−kY (z) =

M∑
k=0

bkz
−kX(z) (53)

Y (z) =
b0 + b1z

−1 + · · ·+ bMz−M

1 + a1z−1 + · · ·+ aN z−N
·X(z) (54)

= b0 ·
z−M

z−N
· (z − z1) · · · (z − zM)

(z − p1) · · · (z − pN )
·X(z) =H(z)X(z) (55)

where zi are the zeros (roots to the numerator polynomial) and pi are the poles (roots
to the denominator polynomial). Inverse transform Y (z) by partial fraction expansion
and the solution is given by the resulting y(n).
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