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z-transform

We defined the z-transform of the impulse response h(n) as

n=—oo n=0
where h(n) = 0 for n < 0 and where z = rel®.

We used the z-transform on the second order difference equation
y(n)—1.27y(n—-1)+0.81y(n—-2)=x(n—-1)—x(n-2)

with the z-transform
Y(2)-1.27z71Y(2) +0.81272Y(2) = 271 X(2) - 22X (2)

This gave us
_ z‘1 —2_2
1-1.27z71+0.81z72

We will now continue with this example.

Y(2)

X(z) =H(z)X(2)

Poles and zeros

From the difference equation we can always get H(z) which is a ratio of two polyno-

mials in z=!. We want to analyze this ratio by factorizing H(z).

B(z)
H(Z) = M
z7l 772
T 1-1.272-110.81z2
z—1

C2z2-1.27z+0.81

Finding the roots to the denominator polynomial
22 -1.272+0.81=0

gives us roots in

1.27 1.27\2
z= —i\/(—) -0.81
2 2

= 0.64+j0.64

=0.9¢¥%
Finding the roots to the numerator polynomial

z—1=0 - z=1



The factoring of H(z) can now be written as

2_1—2_2
H(z) = 13
B =T 2775081222 (13)

z—1

_ 14
z2-1.27z+0.81 (14)

_1
_ z (15)

(z— O.9ej%)(z— 0.9e‘j%)

The roots of the numerator polynomial are called zeros and roots to the denominator
polynomial are called poles. We draw the poles and the zeros in a complex number
plane called a pole-zero diagram where poles are marked by x and zeros are marked by
o.

Poles:

pl,Z = O9ei]% (16)
Zeros:

z1=1 (17)

Pole-zero diagram:

Filter response When...

|H(z)|=0 z is a zero.

e |H(z)| = o0 z is a pole.
|H(z)|~ 0 z is close to a zero.
X |H(z)| > 1 z is close to a pole.

Describing a system by poles and zeros is very useful.

Determine H(w) from the pole-zero plot (page 315-320)

The frequency response H(w) is determined by the location of the poles and zeros
relative to the unit circle.

Define the units U, = eJ“0 — p, and V,, = el®0 — z, for some frequency w,. The units
corresponds to the vectors from the poles or the zeros, respectively, to the point on the
unit circle corresponding to the frequency wy.
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The amplitude response is:

MVl vl
NEANICARER

The phase response is:

ZH(C()()) = ZZVn - ZZUH = ZVI —ZUl —ZUQ = _ﬁl —[))2

[H (o)

z-transform of second order system

Second order system with complex roots..

Sine

h(n) =" -sin(wn)u(n)

=" zl] . (eiw” — e_j“’")u(n)

H(z):l,-( 1 1 )

1 -reloz=l 1 —rejwz-1

rsin(w)z !

~ 1-2rcos(w)z~! +r2z2

Cosine

h(n) =" - cos(wn)u(n)

1, . .
_ = [pjwn —jwn
=1t (e +e )u(n)
1 1 1
H(z)= 2 \Treiog 1 " 1—re‘j“’z—1)

1 -rcos(w)z™!

~ 1-2rcos(w)z~! +r2z2
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Example

We had
z‘1 —2_2
H(z) = 28
&) =T 277081222 (28)
1= -1
:Z_l z (29)

1-1.272-14+0.81z2

Now determine h(n), the inverse z-transform of H(z), with the help of the transforms
for the sine and the cosine. Rewrite H(z) so that we can identify the sine and cosine
terms.

1

1-z~

Hz) =21 30
=2 T 7 v 08122 (30)

Identify 1.27 = 2rcos(wg) and 0.81 = r2. Therefore wy = 7t/4 and r = 0.9.

1 —rcos(wgy)z™! + (rcos(cuo)z_1 —z‘l)- :2122203
H(z)=2z"!. 0 (31)
1-1.27z71+0.81z2
The transforms for the sine and the cosine now gives
-1

hn) = "1 lcos(a)o (n—1))+ % -sin(wp - (1 — 1))] cu(n—1) (32)
—0.9"1. [cos(%-(n— 1))—0.57sin(%-(n— 1))] u(n—1) (33)
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Stability

A system is stable of an input signal of limited amplitude yields an output signal that
is also of limited amplitude. This is called BIBO-stability (bounded input, bounded
output). A sufficient requirement is that

) Ih(m) < oo (34)

This is equivalent to all poles being inside the unit circle in the pole-zero diagram.

FIR-filter

FIR filters have all their poles at the origin and are always BIBO-stable: h(n) has a
finite duration and ), |h(n)| is always limited.



First order IIR-filter

D
A4

Stable if |a| < 1, or equivalently if the pole lies inside the unit circle.

Second order IIR-filter

1
(1-p1z71) (1 =pyz7t)

ZZ

(z—p1)(z—p2)
~ 1
1-(p1+p2)zt +piprz™2

H(z) =

We split the problem into two cases.

Real poles:
1
(1-p1z 1) (1 =ppz7!)

A B
= +
1-piz7t  1-pyz~!

H(z) =

h(n) = (Ap} + Bp%) - u(n)

(35)

(36)

(37)

(38)
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Stable if [p1| < 1 and |py| < 1.

Complex conjugated poles: Two poles where p; , = re*%0:

1

Hiz = (1-p1z 1) (1 =ppz7!) 42)
1

_ 43

1—(py +p2)z~t +p1paz2 (43)

! (44)

~1-2rcos(wg)z™! +r2z2

D
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Stable if |p1| < 1 and |p,| < 1, or equivalently if |r| < 1.

Pole-zero diagrams and impulse responses

Exponentially decaying step
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Exponentially increasing step
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Damped oscillator
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Unstable oscillator

20,
X 10 |
T Oo??????ﬁ | éTT ! ! Time [n] |
X 5 1 Ml(l)w 20 25 30 35 40
_10 -

Some comments on stability

 FIR-filter have all their poles at the origin.

» FIR-filter are always stable in the sense that a limited input signal can never yield
an output signal that is unlimited in amplitude.



* IIR-filter does not have all their poles at the origin.

* IIR-filter are stable only if all their poles lie within the unit circle.

Analog H(s) and discrete H(z)

Analog: Stable if all poles are in the left half-plane.
H(s) = Jh(t)e_”dt
t
Discrete: Stable if all poles lie within the unit circle.
H(z) = Zh(n)z_”
n
where z ~ e°.
Example

Panalog = -0.5+ O.Sj

~0.54j0.5
Pdigital ~ € )
— 05,05
— 0.6e%i0-167
s=0+jQ = z=r-el¢

Solving general differential equations

M
ag(n=k)= ) _bix(n—k)

1=

y(n)+
k=1 k=0
N M

Y(z)+ Zakz_kY(z) = Zbkz_kX(z)
k=1 k=0

bo + blz_l + -+ bMZ_M

Y(z) = - X(2)

1+a;z b+ +ayz™N

zM (z-z1)-(z—2m)

2N (z—py)-(z-pN) -X(z) = H(2)X(2)

(53)

(54)

(55)

where z; are the zeros (roots to the numerator polynomial) and p; are the poles (roots
to the denominator polynomial). Inverse transform Y(z) by partial fraction expansion

and the solution is given by the resulting y(n).



