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Convolution (page 71–80)

The most important connection between input signal and output signal is called con-
volution. If we know the impulse response h(n) of a system, we can calculate the output
signal for any input signal. We are only assuming the properties of linearity and time
invariance (LTI).

Input signal → Output signal

x(n) → y(n)

δ(n) → h(n)

δ(n− k) → h(n− k)

x(k)δ(n− k) → x(k)h(n− k)∑
k

x(k)δ(n− k) →
∑
k

x(k)h(n− k)

y(n) =
∑
k

x(k)h(n− k) =
∑
k

h(k)x(n− k) = h(n) ∗ x(n) (1)

This dependence is called is called convolution and is the most common and diverse
formula in the course.

Example of convolution

Given: Input signal x(n) and impulse response h(n).

x(n) =
{

2 4 6 4 2
}

(2)

h(n) =
{

3 2 1
}

(3)

Find: Output signal y(n).

y(n) =
∑
k

h(n− k)x(k) =
∑
k

h(k)x(n− k) (4)

= h(0)x(n) + h(1)x(n− 1) + h(2)x(n− 2) (5)

= 3x(n) + 2x(n− 1) + x(n− 2) (6)

Solution: We solve the convolution graphically with the following visual procedure

For n = 0:

h(0− k) 1 2 3

x(k) 2 4 6 4 2

h(0− k)x(k) 6
∑

= 6 = y(0)
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For n = 1:

h(1− k) 1 2 3

x(k) 2 4 6 4 2

h(1− k)x(k) 4 12
∑

= 16 = y(1)

For n = 2:

h(2− k) 1 2 3

x(k) 2 4 6 4 2

h(2− k)x(k) 2 8 18
∑

= 28 = y(2)

Multiply the components of each rows and add the results. Shift the impulse response
one step to the right and repeat. Repeat as long as h(n− k) covers the signal x(k). The
output is

y(n) =
{

6 16 28 28 20 8 2
}

(7)

Equivalent solution with a table.

6 16 28 28 20

8

2

2 4 6 4 2

3 6 12 18 12 6

2 4 8 12 8 4

1 2 4 6 4 2

Multiply rows and columns in the matrix. Sum along the anti-diagonals and read the
result in the direction of the diagonal.

>> x = [2, 4, 6, 4, 2];
>> h = [3, 2, 1];
>> y = conv(x,h)
y =

6 16 28 28 20 8 2

Properties of convolution (page 81)

The usual properties apply.
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Commutativity

x1(n) ∗ x2(n) = x2(n) ∗ x1(n) (8)

Associativity

x1(n) ∗ [x2(n) ∗ x3(n)] = [x1(n) ∗ x2(n)] ∗ x3(n) (9)

Distributivity

x1(n) ∗ [x2(n) + x3(n)] = x1(n) ∗ x2(n) + x1(n) ∗ x3(n) (10)

Input-output

y(n) = x(n) ∗ h(n) (11)

x(n) h(n) y(n)

Cascade or Serial coupling

y(n) = x(n) ∗ h1(n) ∗ h2(n) (12)

h(n) = h1(n) ∗ h2(n) (13)

x(n) h1(n) h2(n) y(n)

Parallel coupling

y(n) = [x(n) ∗ h1(n)] + [x(n) ∗ h2(n)] = x(n) ∗ [h1(n) + h2(n)] (14)

h(n) = h1(n) + h2(n) (15)

h1(n)

x(n) + y(n)

h2(n)
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Stability (sid 85)

A system is BIBO-stable (bounded input-bounded output) if

|x(n)| ≤Mx ⇒
∣∣∣y(n)

∣∣∣ ≤My (16)

or equivalently

∣∣∣y(n)
∣∣∣ =

∣∣∣∣∣∣∣
∞∑

k=−∞
h(k)x(n− k)

∣∣∣∣∣∣∣ (17)

≤
∞∑

k=−∞
|h(k)| |x(n− k)| (18)

≤Mx ·
∞∑

k=−∞
|h(k)| (19)

The system is therefore stable if

∞∑
k=−∞

|h(k)| <∞ (20)

Difference equations (page 93–95)

General:

y(n) +
N∑
k=1

aky(n− k) =
N∑
k=0

bkx(n− k) (21)

Example

The FIR-filter

y(n) = 0.5x(n) + 0.25x(n− 1) + 0.15x(n− 2) (22)

immediately gives us the impulse response

h(n) =
{

0.5 0.25 0.15
}

(23)

A first order IIR-filter:

y(n) = 0.5y(n− 1) + 2x(n) (24)

A second order IIR-filter:

y(n) = 0.5y(n− 1) + 0.5y(n− 2) + x(n) (25)

For IIR-filters we have to solve the difference equation in order to determine the im-
pulse response h(n). We will solve a first order difference equation (page 94).

y(n) = −a1y(n− 1) + b0x(n) (26)

5



Solve iteratively for n ≥ 0.

y(0) = −a1y(−1) + b0x(0) (27)

y(1) = −a1y(0) + b0x(1) = (−a1)2y(−1) + b0x(1) + (−a1)b0x(0) (28)

y(2) = −a1y(1) + b0x(2) = (−a1)3y(−1) + b0x(2) + (−a1)b0x(1) + (−a1)2b0x(0) (29)

y(n) =
n∑
k=0

(−a1)k · b0x(n− k) + (−a1)n+1 · y(−1)︸             ︷︷             ︸
often 0

(30)

We will wait until chapter 3 and the z-transform to solve higher order difference equa-
tions.

Example

Given:

h(n) =
(1
2

)n
·u(n) (31)

x(n) = u(n) (32)

Find:

y(n) = h(n) ∗ x(n) (33)

Solution: Convolution gives

y(n) =
∞∑

k=−∞
h(k)x(n− k) [h(k) = 0 if k < 0 and x(n− k) = 0 if k > n] (34)

=
∞∑

k=−∞

(1
2

)k
·u(k) ·u(n− k) =

n∑
k=0

(1
2

)k
(35)

=
1−

(
1
2

)n+1

1− 1
2

= 2−
(1
2

)n
n ≥ 0 (36)

The solution is therefore

y(n) =
[
2−

(1
2

)n]
·u(n) (37)

Correlation functions (sid 118)

How similar are two signals?
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Auto correlation function

rxx(k) =
∞∑

n=−∞
x(n)x(n− k) = x(k) ∗ x(−k) (38)

Cross correlation function

ryx(k) =
∞∑

n=−∞
y(n)x(n− k) = y(k) ∗ x(−k) (39)

Cross correlation for input and output signals

x(n) h(n) y(n)

The auto correlation for the input signal:

rxx(k) = x(k) ∗ x(−k) (40)

The cross correlation between the input signal and the output signal:

ryx(k) = y(k) ∗ x(−k) (41)

= h(k) ∗ x(k) ∗ x(−k) (42)

= h(k) ∗ rxx(k) (43)

The auto correlation for the output signal:

ryy(k) = y(k) ∗ y(−k) (44)

= h(k) ∗ x(k) ∗ h(−k) ∗ x(−k) (45)

= rhh(k) ∗ rxx(k) (46)

We can determine an unknown system h(n) by using an input signal x(n). For example,
if x(n) is white noise, then

rxx(k) = δ(k) (47)

and therefore the impulse response becomes

h(k) = ryx(k) (48)

Example of IIR-filter

Determine the balance of a bank account with interest.

Given: Deposit is 100 every year with 5% interest.

x(n) = 100 ·u(n) (49)

y(n) = balance at year n (50)
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Find: Balance after 1, 2, 5 and 20 years.

Solution: The current balance is the balance from last year plus 5% interest and the
deposit for the current year.

y(n) = 1.05y(n− 1) + x(n) (51)

We have a recursive system where the new balance depends on both the previous
balance (old output signal) and the deposit (input signal). This is an IIR-filter.

Iterative solution gives:

y(0) = 1.05y(−1) + x(0) = 100 (52)

y(n) = 0 for n < 0 before the saving started.

y(1) = 1.05y(0) + x(1) = 1.05 · 100 + 100 (53)

y(2) = 1.05y(1) + x(2) = 1.05 · (1.05 · 100 + 100) + 100 (54)

y(3) = . . . (55)

Using the z-transform we can determine a formula for y(n) (more on that later).

Y (z) · (1− 1.05z−1) = X(z) (56)

X(z) =
100

1− z−1 (57)

Y (z) =
100

(1− 1.05z−1)(1− z−1)
(58)
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