Lecture 2

Digital Signal Processing

Chapter 2
Convolution
Impulse response
Difference equations
Correlation functions

Mikael Swartling Nedelko Grbic Bengt Mandersson

rev. 2016

Convolution (page 71-80)

The most important connection between input signal and output signal is called convolution. If we know the impulse response $h(n)$ of a system, we can calculate the output signal for any input signal. We are only assuming the properties of linearity and time invariance (LTI).

Input signal	\rightarrow Output signal
$x(n)$	$\rightarrow y(n)$
$\delta(n)$	$\rightarrow h(n)$
$\delta(n-k)$	$\rightarrow h(n-k)$
$x(k) \delta(n-k)$	$\rightarrow x(k) h(n-k)$
$\sum_{k} x(k) \delta(n-k)$	$\rightarrow \sum_{k} x(k) h(n-k)$

$$
\begin{equation*}
y(n)=\sum_{k} x(k) h(n-k)=\sum_{k} h(k) x(n-k)=h(n) * x(n) \tag{1}
\end{equation*}
$$

This dependence is called is called convolution and is the most common and diverse formula in the course.

Example of convolution

Given: Input signal $x(n)$ and impulse response $h(n)$.

$$
\begin{align*}
& x(n)=\left\{\begin{array}{lllll}
\underline{2} & 4 & 6 & 4 & 2
\end{array}\right\} \tag{2}\\
& h(n)=\left\{\begin{array}{lll}
\underline{3} & 2 & 1
\end{array}\right\} \tag{3}
\end{align*}
$$

Find: Output signal $y(n)$.

$$
\begin{align*}
y(n) & =\sum_{k} h(n-k) x(k)=\sum_{k} h(k) x(n-k) \tag{4}\\
& =h(0) x(n)+h(1) x(n-1)+h(2) x(n-2) \tag{5}\\
& =3 x(n)+2 x(n-1)+x(n-2) \tag{6}
\end{align*}
$$

Solution: We solve the convolution graphically with the following visual procedure For $n=0$:

$h(0-k)$	1	2	$\underline{3}$					
$x(k)$			$\underline{2}$	4	6	4	2	
$h(0-k) x(k)$			$\underline{6}$					$\sum=\underline{6}=y(0)$

For $n=1$:

$h(1-k)$	1	2	$\underline{3}$				
$x(k)$		$\underline{2}$	4	6	4	2	
$h(1-k) x(k)$		4	12			$\sum=16=y(1)$	

For $n=2$:
$\left.\begin{array}{llllll}\hline h(2-k) & 1 & 2 & \underline{3} & & \\ x(k) & \underline{2} & 4 & 6 & 4 & 2\end{array}\right]$

Multiply the components of each rows and add the results. Shift the impulse response one step to the right and repeat. Repeat as long as $h(n-k)$ covers the signal $x(k)$. The output is

$$
y(n)=\left\{\begin{array}{lllllll}
\underline{6} & 16 & 28 & 28 & 20 & 8 & 2 \tag{7}
\end{array}\right\}
$$

Equivalent solution with a table.

Multiply rows and columns in the matrix. Sum along the anti-diagonals and read the result in the direction of the diagonal.

```
>> x = [2, 4, 6, 4, 2];
>> h = [3, 2, 1];
>> y = conv(x,h)
y =
\begin{tabular}{lllllll}
6 & 16 & 28 & 28 & 20 & 8 & 2
\end{tabular}
```


Properties of convolution (page 81)

The usual properties apply.

Commutativity

$$
\begin{equation*}
x_{1}(n) * x_{2}(n)=x_{2}(n) * x_{1}(n) \tag{8}
\end{equation*}
$$

Associativity

$$
\begin{equation*}
x_{1}(n) *\left[x_{2}(n) * x_{3}(n)\right]=\left[x_{1}(n) * x_{2}(n)\right] * x_{3}(n) \tag{9}
\end{equation*}
$$

Distributivity

$$
\begin{equation*}
x_{1}(n) *\left[x_{2}(n)+x_{3}(n)\right]=x_{1}(n) * x_{2}(n)+x_{1}(n) * x_{3}(n) \tag{10}
\end{equation*}
$$

Input-output

$$
\begin{equation*}
y(n)=x(n) * h(n) \tag{11}
\end{equation*}
$$

$$
x(n) \longrightarrow h(n) \longrightarrow y(n)
$$

Cascade or Serial coupling

$$
\begin{align*}
& y(n)=x(n) * h_{1}(n) * h_{2}(n) \tag{12}\\
& h(n)=h_{1}(n) * h_{2}(n) \tag{13}
\end{align*}
$$

$$
x(n) \longrightarrow h_{1}(n) \longrightarrow h_{2}(n) \longrightarrow y(n)
$$

Parallel coupling

$$
\begin{align*}
& y(n)=\left[x(n) * h_{1}(n)\right]+\left[x(n) * h_{2}(n)\right]=x(n) *\left[h_{1}(n)+h_{2}(n)\right] \tag{14}\\
& h(n)=h_{1}(n)+h_{2}(n) \tag{15}
\end{align*}
$$

Stability (sid 85)

A system is BIBO-stable (bounded input-bounded output) if

$$
\begin{equation*}
|x(n)| \leq M_{x} \quad \Rightarrow \quad|y(n)| \leq M_{y} \tag{16}
\end{equation*}
$$

or equivalently

$$
\begin{align*}
|y(n)| & =\left|\sum_{k=-\infty}^{\infty} h(k) x(n-k)\right| \tag{17}\\
& \leq \sum_{k=-\infty}^{\infty}|h(k)||x(n-k)| \tag{18}\\
& \leq M_{x} \cdot \sum_{k=-\infty}^{\infty}|h(k)| \tag{19}
\end{align*}
$$

The system is therefore stable if

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}|h(k)|<\infty \tag{20}
\end{equation*}
$$

Difference equations (page 93-95)

General:

$$
\begin{equation*}
y(n)+\sum_{k=1}^{N} a_{k} y(n-k)=\sum_{k=0}^{N} b_{k} x(n-k) \tag{21}
\end{equation*}
$$

Example

The FIR-filter

$$
\begin{equation*}
y(n)=0.5 x(n)+0.25 x(n-1)+0.15 x(n-2) \tag{22}
\end{equation*}
$$

immediately gives us the impulse response

$$
h(n)=\left\{\begin{array}{lll}
0.5 & 0.25 & 0.15 \tag{23}
\end{array}\right\}
$$

A first order IIR-filter:

$$
\begin{equation*}
y(n)=0.5 y(n-1)+2 x(n) \tag{24}
\end{equation*}
$$

A second order IIR-filter:

$$
\begin{equation*}
y(n)=0.5 y(n-1)+0.5 y(n-2)+x(n) \tag{25}
\end{equation*}
$$

For IIR-filters we have to solve the difference equation in order to determine the impulse response $h(n)$. We will solve a first order difference equation (page 94).

$$
\begin{equation*}
y(n)=-a_{1} y(n-1)+b_{0} x(n) \tag{26}
\end{equation*}
$$

Solve iteratively for $n \geq 0$.

$$
\begin{align*}
& y(0)=-a_{1} y(-1)+b_{0} x(0) \tag{27}\\
& y(1)=-a_{1} y(0)+b_{0} x(1)=\left(-a_{1}\right)^{2} y(-1)+b_{0} x(1)+\left(-a_{1}\right) b_{0} x(0) \tag{28}\\
& y(2)=-a_{1} y(1)+b_{0} x(2)=\left(-a_{1}\right)^{3} y(-1)+b_{0} x(2)+\left(-a_{1}\right) b_{0} x(1)+\left(-a_{1}\right)^{2} b_{0} x(0) \tag{29}\\
& y(n)=\sum_{k=0}^{n}\left(-a_{1}\right)^{k} \cdot b_{0} x(n-k)+\underbrace{\left(-a_{1}\right)^{n+1} \cdot y(-1)}_{\text {often } 0} \tag{30}
\end{align*}
$$

We will wait until chapter 3 and the z-transform to solve higher order difference equations.

Example

Given:

$$
\begin{align*}
& h(n)=\left(\frac{1}{2}\right)^{n} \cdot u(n) \tag{31}\\
& x(n)=u(n) \tag{32}
\end{align*}
$$

Find:

$$
\begin{equation*}
y(n)=h(n) * x(n) \tag{33}
\end{equation*}
$$

Solution: Convolution gives

$$
\begin{align*}
y(n) & =\sum_{k=-\infty}^{\infty} h(k) x(n-k) \quad[h(k)=0 \text { if } k<0 \text { and } x(n-k)=0 \text { if } k>n] \tag{34}\\
& =\sum_{k=-\infty}^{\infty}\left(\frac{1}{2}\right)^{k} \cdot u(k) \cdot u(n-k)=\sum_{k=0}^{n}\left(\frac{1}{2}\right)^{k} \tag{35}\\
& =\frac{1-\left(\frac{1}{2}\right)^{n+1}}{1-\frac{1}{2}}=2-\left(\frac{1}{2}\right)^{n} \quad n \geq 0 \tag{36}
\end{align*}
$$

The solution is therefore

$$
\begin{equation*}
y(n)=\left[2-\left(\frac{1}{2}\right)^{n}\right] \cdot u(n) \tag{37}
\end{equation*}
$$

Correlation functions (sid 118)

How similar are two signals?

Auto correlation function

$$
\begin{equation*}
r_{x x}(k)=\sum_{n=-\infty}^{\infty} x(n) x(n-k)=x(k) * x(-k) \tag{38}
\end{equation*}
$$

Cross correlation function

$$
\begin{equation*}
r_{y x}(k)=\sum_{n=-\infty}^{\infty} y(n) x(n-k)=y(k) * x(-k) \tag{39}
\end{equation*}
$$

Cross correlation for input and output signals

The auto correlation for the input signal:

$$
\begin{equation*}
r_{x x}(k)=x(k) * x(-k) \tag{40}
\end{equation*}
$$

The cross correlation between the input signal and the output signal:

$$
\begin{align*}
r_{y x}(k) & =y(k) * x(-k) \tag{41}\\
& =h(k) * x(k) * x(-k) \tag{42}\\
& =h(k) * r_{x x}(k) \tag{43}
\end{align*}
$$

The auto correlation for the output signal:

$$
\begin{align*}
r_{y y}(k) & =y(k) * y(-k) \tag{44}\\
& =h(k) * x(k) * h(-k) * x(-k) \tag{45}\\
& =r_{h h}(k) * r_{x x}(k) \tag{46}
\end{align*}
$$

We can determine an unknown system $h(n)$ by using an input signal $x(n)$. For example, if $x(n)$ is white noise, then

$$
\begin{equation*}
r_{x x}(k)=\delta(k) \tag{47}
\end{equation*}
$$

and therefore the impulse response becomes

$$
\begin{equation*}
h(k)=r_{y x}(k) \tag{48}
\end{equation*}
$$

Example of IIR-filter

Determine the balance of a bank account with interest.

Given: Deposit is 100 every year with 5% interest.

$$
\begin{align*}
& x(n)=100 \cdot u(n) \tag{49}\\
& y(n)=\text { balance at year } n \tag{50}
\end{align*}
$$

Find: Balance after 1, 2, 5 and 20 years.
Solution: The current balance is the balance from last year plus 5\% interest and the deposit for the current year.

$$
\begin{equation*}
y(n)=1.05 y(n-1)+x(n) \tag{51}
\end{equation*}
$$

We have a recursive system where the new balance depends on both the previous balance (old output signal) and the deposit (input signal). This is an IIR-filter.

Iterative solution gives:

$$
\begin{equation*}
y(0)=1.05 y(-1)+x(0)=100 \tag{52}
\end{equation*}
$$

$y(n)=0$ for $n<0$ before the saving started.

$$
\begin{align*}
& y(1)=1.05 y(0)+x(1)=1.05 \cdot 100+100 \tag{53}\\
& y(2)=1.05 y(1)+x(2)=1.05 \cdot(1.05 \cdot 100+100)+100 \tag{54}\\
& y(3)=\ldots \tag{55}
\end{align*}
$$

Using the z-transform we can determine a formula for $y(n)$ (more on that later).

$$
\begin{align*}
& Y(z) \cdot\left(1-1.05 z^{-1}\right)=X(z) \tag{56}\\
& X(z)=\frac{100}{1-z^{-1}} \tag{57}\\
& Y(z)=\frac{100}{\left(1-1.05 z^{-1}\right)\left(1-z^{-1}\right)} \tag{58}
\end{align*}
$$

