Lecture 12

Digital Signal Processing

Chapter 9

Structures

Mikael Swartling Nedelko Grbic Bengt Mandersson
rev. 2016

Difference equations

FIR

$$
\begin{equation*}
y(n)=\sum_{k=0}^{M} b_{k} x(n-k) \tag{1}
\end{equation*}
$$

+ Always stable.
+ Can be made with linear phase if $h(n)$ is symmetric.
- The order M is often large (more computationally demanding).
- Non-parametric (for example, difficult to describe resonance).

IIR

$$
\begin{equation*}
y(n)+\sum_{k=1}^{N} a_{k} y(n-k)=\sum_{k=0}^{M} b_{k} x(n-k) \tag{2}
\end{equation*}
$$

+ The numerator and denominators orders M and N can be made small (less computationally demanding).
+ Parametric (for example, poles describe resonance).
- Can be unstable.
- Cannot have linear phase.

FIR filters

The following diagram is called direct form, transversal filter, or tapped delay filter.

From the figure we can immediately identify

$$
\begin{align*}
y(n) & =h(0) x(n)+h(1) x(n-1)+h(2) x(n-2)+h(3) x(n-3) \tag{3}\\
& =\sum_{k=0}^{3} h(k) x(n-k)=\sum_{k=0}^{3} b_{k} x(n-k) \tag{4}
\end{align*}
$$

and

$$
\begin{align*}
Y(z) & =h(0) X(z)+h(1) z^{-1} X(z)+h(2) z^{-2} X(z)+h(3) z^{-3} X(z) \tag{5}\\
& =\sum_{k=0}^{3} h(k) z^{-k} X(z)=\sum_{k=0}^{3} b_{k} z^{-k} X(z) \tag{6}
\end{align*}
$$

The impulse response for a linear phase FIR filter is symmetric. We can use this to reduce the number of multiplications.

IIR filters

First order:

$$
\begin{equation*}
y(n)+a_{1} y(n-1)=b_{0} x(n)+b_{1} x(n-1) \quad \Rightarrow \quad y(n)=-a_{1} y(n-1)+v(n) \tag{7}
\end{equation*}
$$

Can be drawn on direct form I.

Since the system is linear we can change the order of the sub-systems.

The two delay lines can be merged to direct form II (normal form, canonical form).

Second order filter:

Introduce a helper variable $v(n)$ in order to find the transfer function.

$$
\begin{align*}
& V(z)=-z^{-1} a_{1} V(z)-z^{-2} a_{2} V(z)+X(z) \tag{8}\\
& V(z)+z^{-1} a_{1} V(z)+z^{-2} a_{2} V(z)=X(z) \tag{9}\\
& V(z) \cdot\left(1+z^{-1} a_{1}+z^{-2} a_{2}\right)=X(z) \tag{10}\\
& V(z)=\frac{X(z)}{1+z^{-1} a_{1}+z^{-2} a_{2}} \tag{11}
\end{align*}
$$

Calculate the output signal from $v(n)$.

$$
\begin{align*}
& Y(z)=b_{0} V(z)+z^{-1} b_{1} V(z)+z^{-2} b_{2} V(z) \tag{12}\\
& Y(z)=V(z) \cdot\left(b_{0}+z^{-1} b_{1}+z^{-2} b_{2}\right) \tag{13}\\
& Y(z)=\frac{b_{0}+z^{-1} b_{1}+z^{-2} b_{2}}{1+z^{-1} a_{1}+z^{-2} a_{2}} \cdot X(z) \tag{14}
\end{align*}
$$

The same for the z-transform domain.

$$
\begin{equation*}
Y(z)+z^{-1} a_{1} Y(z)+z^{-2} a_{2} Y(z)=b_{0} X(z)+z^{-1} b_{1} X(z)+z^{-2} b_{2} X(z) \tag{15}
\end{equation*}
$$

The same for the difference equation form.

$$
\begin{equation*}
y(n)+a_{1} y(n-1)+a_{2} y(n-2)=b_{0} x(n)+b_{1} x(n-1)+b_{2} x(n-2) \tag{16}
\end{equation*}
$$

Parallel or cascade form

It is numerically better to implement IIR systems as cascaded or parallel first or second order sub-systems.

$$
\begin{array}{rlrl}
H(z) & =\frac{1}{1-\frac{1}{2} \cdot z^{-1}+\frac{1}{4} \cdot z^{-2}-\frac{1}{8} \cdot z^{-3}} & {\left[\text { poles in } p_{1}=0.5 \text { och } p_{2,3}= \pm \mathrm{j} 0.5\right]} \\
& =\frac{1}{1+\frac{1}{4} \cdot z^{-2}} \cdot \frac{1}{1-\frac{1}{2} \cdot z^{-1}} & & {\left[\text { cascade coupling of } H_{A}(z) \text { and } H_{B}(z)\right]} \\
& =\frac{\frac{1}{2}+\frac{1}{4} \cdot z^{-1}}{1+\frac{1}{4} \cdot z^{-2}}+\frac{\frac{1}{2}}{1-\frac{1}{2} \cdot z^{-1}} & & {\left[\text { parallel coupling of } H_{1}(z) \text { and } H_{2}(z)\right]} \tag{19}
\end{array}
$$

Cascade (series) coupling:

Parallel coupling:

Lattice filter

A very common structure when modelling signals, especially speech signals.

Second order lattice FIR

If all $\left|K_{i}\right|<1$ then all roots (zeros) are inside the unit circle.

Analysis of lattice FIR

Step 0:

$$
\begin{equation*}
A_{0}(z)=B_{0}(z)=1 \tag{20}
\end{equation*}
$$

Step 1:

$$
\begin{align*}
& A_{1}(z)=1+K_{1} z^{-1} \tag{21}\\
& B_{1}(z)=K_{1}+z^{-1} \tag{22}
\end{align*}
$$

Step 1:

$$
\begin{array}{ll}
A_{2}(z)=A_{1}(z)+K_{2} z^{-1} B_{1}(z) & =1+\left(K_{1}+K_{1} K_{2}\right) z^{-1}+K_{2} z^{-2} \\
B_{2}(z)=K_{2} A_{1}(z)+z^{-1} B_{1}(z) & =K_{2}+\left(K_{1}+K_{1} K_{2}\right) z^{-1}+z^{-2} \tag{24}
\end{array}
$$

$B_{2}(z)$ can be obtained from $A_{2}(z)$ with the coefficients in reverse order.
Step m :

$$
\begin{align*}
& A_{m}(z)=A_{m-1}(z)+K_{m} z^{-1} B_{m-1}(z) \tag{25}\\
& B_{m}(z)=K_{m} A_{m-1}(z)+z^{-1} B_{m-1}(z) \tag{26}
\end{align*}
$$

In matrix form:

$$
\left[\begin{array}{c}
A_{m}(z) \tag{27}\\
B_{m}(z)
\end{array}\right]=\left[\begin{array}{cc}
1 & z^{-1} K_{m} \\
K_{m} & z^{-1}
\end{array}\right] \cdot\left[\begin{array}{c}
A_{m-1}(z) \\
B_{m-1}(z)
\end{array}\right]
$$

Reverse:

$$
\begin{equation*}
A_{m-1}(z)=\frac{1}{1-K_{m}^{2}} \cdot\left[A_{m}(z)-K_{m} B_{m}(z)\right] \tag{28}
\end{equation*}
$$

Second order lattice all-pole IIR

All-pole filters have poles only (all zeros at the origin).

Compare with lattice FIR:

$$
\begin{equation*}
H(z)=\frac{1}{A(z)} \tag{29}
\end{equation*}
$$

If all $\left|K_{i}\right|<1$ then all roots (poles) are inside the unit circle.

Example

Given:

$$
\begin{equation*}
H(z)=1-z^{-1}+\frac{1}{2} \cdot z^{-2} \quad\left[\text { zeros in } z_{1,2}=\frac{1}{\sqrt{2}} \cdot \mathrm{e}^{ \pm j \pi \cdot \frac{1}{4}}\right] \tag{30}
\end{equation*}
$$

Find: Calculate lattice FIR coefficients K_{i}.
Solution: Start with

$$
\begin{align*}
& A_{2}(z)=H(z)=1-z^{-1}+\frac{1}{2} \cdot z^{-2} \Rightarrow K_{2}=\frac{1}{2} \tag{31}\\
& B_{2}(z)=\frac{1}{2}-z^{-1}+z^{-2} \tag{32}
\end{align*}
$$

Calculate in reverse:

$$
\begin{align*}
A_{1}(z) & =\frac{1}{1-K_{2}^{2}} \cdot\left[A_{2}(z)-K_{2} B_{2}(z)\right] \tag{33}\\
& =\frac{1}{1-\frac{1}{4}} \cdot\left[\left(1-z^{-1}+\frac{1}{2} \cdot z^{-2}\right)-\frac{1}{2} \cdot\left(\frac{1}{2}-z^{-1}+z^{-2}\right)\right] \tag{34}\\
& =1-\frac{2}{3} \cdot z^{-1} \quad \Rightarrow \quad K_{1}=-\frac{2}{3} \tag{35}
\end{align*}
$$

Finally, the answer is

$$
K=\left\{\begin{array}{ll}
-\frac{2}{3} & \frac{1}{2} \tag{36}
\end{array}\right\}
$$

Algorithms

From lattice to system equation

Given: $K=\left\{\begin{array}{llll}K_{1} & K_{2} & \ldots & K_{m}\end{array}\right\}$
Find: $H(z)$

Solution:

$$
\begin{align*}
& A_{0}(z)=B_{0}(z)=1 \tag{37}\\
& A_{m}(z)=A_{m-1}(z)+K_{m} z^{-1} B_{m-1}(z) \tag{38}\\
& B_{m}(z)=\text { coefficients in } A_{m}(z) \text { in reverse order } \tag{39}\\
& H(z)=A_{M-1}(z) \tag{40}
\end{align*}
$$

From system equation to lattice

Given: $H(z)$
Find: $K=\left\{\begin{array}{lllll}K_{1} & K_{2} & \ldots & K_{m}\end{array}\right\}$

Solution:

$$
\begin{align*}
& A_{M-1}(z)=H(z) \tag{41}\\
& K_{m}=\text { coefficients for the terms } z^{-m} \tag{42}
\end{align*}
$$

$$
\begin{equation*}
A_{m-1}(z)=\frac{1}{1-K_{m}^{2}} \cdot\left[A_{m}(z)-K_{m} B_{m}(z)\right] \tag{44}
\end{equation*}
$$

$B_{m-1}(z)=$ coefficients in $A_{m-1}(z)$ in reverse order

