Lecture 10

Digital Signal Processing

Chapter 7

Discrete Fourier transform
DFT

Mikael Swartling Nedelko Grbic Bengt Mandersson
rev. 2016

The Discrete-Time Fourier Transform (DTFT)

The Fourier transform of a discrete signal:

$$
\begin{align*}
X(\omega) & =\sum_{n=-\infty}^{\infty} x(n) \mathrm{e}^{-\mathrm{j} \omega n} \tag{1}\\
x(n) & =\int_{-\pi}^{\pi} X(\omega) \mathrm{e}^{\mathrm{j} \omega n} \mathrm{~d} \omega \tag{2}\\
& =\int_{0}^{2 \pi} X(\omega) \mathrm{e}^{\mathrm{j} \omega n} \mathrm{~d} \omega \tag{3}
\end{align*}
$$

Convergence if $x(n)$ is stable:

$$
\begin{equation*}
\sum_{n}|x(n)|<\infty \tag{4}
\end{equation*}
$$

Weaker convergence if

$$
\begin{equation*}
\sum_{n}|x(n)| \rightarrow \infty \tag{5}
\end{equation*}
$$

but

$$
\begin{equation*}
\sum_{n}|x(n)|^{2}<\infty \tag{6}
\end{equation*}
$$

The z-transform

Let $h(n)$ be a causal impulse response. Causal means that $h(n)=0$ for $n<0$.
The z-transform of the impulse response is defined as

$$
\begin{equation*}
H(z)=\sum_{n=0}^{\infty} h(n) z^{-n} \tag{7}
\end{equation*}
$$

where $z=r \cdot \mathrm{e}^{\mathrm{j} \omega}$ is a complex number that we often write as a magnitude and a phase. $H(z)$ is thus a complex function of a complex variable.

If $h(n)$ is causal and stable then

$$
\begin{equation*}
H(\omega)=H\left(z \mid z=\mathrm{e}^{\mathrm{j} \omega}\right) \tag{8}
\end{equation*}
$$

The Discrete Fourier Transform (DFT)

Let

$$
x(n)=\left\{\begin{array}{llllllllll}
\ldots & 0 & \underline{1} & 1 & 1 & 1 & 0 & 0 & 0 & \ldots \tag{9}
\end{array}\right\}
$$

Choose a length N and calculate the normal DTFT at the frequencies

$$
\omega=2 \pi \cdot\left\{\begin{array}{llllll}
0 & \frac{1}{N} & \frac{2}{N} & \frac{3}{N} & \ldots & \frac{N-1}{N} \tag{10}
\end{array}\right\}
$$

This yields the Discrete Fourier Transform (DFT)

$$
\begin{equation*}
X_{\mathrm{DFT}}(k)=\sum_{n=0}^{N-1} x(n) \mathrm{e}^{-\mathrm{j} 2 \pi \cdot \frac{k}{N} \cdot n} \quad \text { for } k=0,1, \ldots, N-1 \tag{11}
\end{equation*}
$$

and the inverse transform (IDFT)

$$
\begin{equation*}
x_{\text {IDFT }}(n)=\frac{1}{N} \cdot \sum_{k=0}^{N-1} X(k) \mathrm{e}^{\mathrm{j} 2 \pi \cdot \frac{k}{N} \cdot n} \quad \text { for } n=0,1, \ldots, N-1 \tag{12}
\end{equation*}
$$

Periodicity

The Fourier transform (DTFT)

$X(\omega)$ is periodic in ω since $\mathrm{e}^{\mathrm{j} \omega n}=\mathrm{e}^{\mathrm{j}(\omega+2 \pi) n}$.

The Discrete Fourier transform (DFT)

Both $x(n)$ and $X(k)$ are periodic with period N since $n^{\prime}=n+p N$ and $k^{\prime}=k+p N$ for p integers and yields the same numerical values.

$$
\begin{align*}
& \mathrm{e}^{\mathrm{j} 2 \pi \cdot \frac{k}{N} \cdot(n+p N)}=\mathrm{e}^{\mathrm{j} 2 \pi \cdot \frac{k}{N} \cdot n} \cdot \mathrm{e}^{\mathrm{j} 2 \pi k p} \tag{13}\\
& \mathrm{e}^{\mathrm{j} 2 \pi \cdot \frac{k+p N}{N} \cdot n}=\mathrm{e}^{\mathrm{j} 2 \pi \cdot \frac{k}{N} \cdot n} \cdot \mathrm{e}^{\mathrm{j} 2 \pi n p} \tag{14}
\end{align*}
$$

Indices are calculated modulo- N.
If $x(n)$ is defined only for $0 \leq n<N$ (length N) we get

$$
\begin{equation*}
X_{\mathrm{DFT}}(k)=X\left(\omega \left\lvert\, \omega=2 \pi \cdot \frac{k}{N}\right.\right) \tag{15}
\end{equation*}
$$

which is the same as sampling $X(\omega)$ in N uniformly distributed frequencies.
If N is an even power-of-2, the calculations can be made efficiently, on the order of $O(N \log N)$ instead of $O\left(N^{2}\right)$ for the direct DFT implementation. The algorithm is caleld the Fast Fourier Transform (FFT) and is described in chapter 8 but is not a part of the course.

Roots of unity

$$
\begin{align*}
\sum_{k=0}^{N-1} \mathrm{e}^{\mathrm{j} 2 \pi \cdot \frac{k}{N} \cdot(n-l)} & = \begin{cases}N & \text { if } n-l=0+p N \\
0 & \text { if } n-l \neq 0+p N\end{cases} \tag{16}\\
& =N \cdot \delta(n-l \bmod N) \tag{17}\\
& \equiv N \cdot \delta((n-l))_{N} \tag{18}
\end{align*}
$$

The sum of the points evenly distributed around the unit circle is 0 .

The sum of the values at the points are:

$$
\begin{array}{ll}
A+A+A+A+A+A+A+A=8 & \text { for } n-l=0 \\
A+B+C+D+E+F+G+H=0 & \text { for } n-l=1 \\
A+C+E+G+A+C+E+G=0 & \text { for } n-l=2, \text { and so on }
\end{array}
$$

Compare to the integral of $\cos (\Omega t)$ over a whole number of periods that is 0 except when $\Omega=0$.

Special properties for the DFT

Both $x(n)$ and $X(k)$ are periodic, which imposes the property that all indices are calculated modulo N.

$$
\begin{align*}
& x(n)=\left\{\begin{array}{llllllllll}
\cdots & 3 & 4 & \underline{1} & 2 & 3 & 4 & 1 & 2 & \cdots
\end{array}\right\} \tag{19}\\
& x(n-1)=\left\{\begin{array}{llllllllll}
\cdots & 2 & 3 & \underline{4} & 1 & 2 & 3 & 4 & 1 & \cdots
\end{array}\right\} \tag{20}
\end{align*}
$$

Circular shift becomes

$$
\begin{equation*}
x\left(n-n_{0} \quad \bmod N\right) \Rightarrow X(k) \cdot \mathrm{e}^{-\mathrm{j} 2 \pi \cdot \frac{k}{N} \cdot n_{0}} \tag{21}
\end{equation*}
$$

Example of shift for the DFT:

$$
x(n)=\left\{\begin{array}{llll}
\underline{1} & 2 & 3 & 4
\end{array}\right\} \Rightarrow x(n-1)=\left\{\begin{array}{llll}
\underline{4} & 1 & 2 & 3 \tag{22}
\end{array}\right\}
$$

Circular convolution and the DFT, length N (page 476-477)

Multiplication in the DFT-domain is circular convolution in the time domain.

$$
\begin{equation*}
X(k)=X_{1}(k) \cdot X_{2}(k) \quad \Rightarrow \quad x(n)=x_{1}(n) \otimes x_{2}(n)=\sum_{k=0}^{N-1} x_{1}(k) \cdot x_{2}(n-k \bmod N) \tag{23}
\end{equation*}
$$

Example

Given:

$$
\begin{align*}
& x(n)=\left\{\begin{array}{llll}
\underline{1} & 2 & 3 & 4
\end{array}\right\} \tag{24}\\
& h(n)=\left\{\begin{array}{llll}
\underline{2} & 2 & 1 & 1
\end{array}\right\} \tag{25}
\end{align*}
$$

Find:

$$
\begin{equation*}
y_{C}(n)=x(n) \otimes_{4} h(n) \tag{26}
\end{equation*}
$$

Graphical solution (with $x(n)$ repeated and $h(n)$ time reversed):

| $h(k)$ | 1 | 1 | 2 | $\underline{2}$ | \rightarrow | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x(k)$ | 2 | 3 | 4 | $\underline{1}$ | 2 | 3 | 4 | 1 | 2 | 3 |
| $y_{C}(k)$ | | | | $\underline{15}$ | 13 | 15 | 17 | | | |

Equivalent solution with a convolution table.

For linear convolution the length of this convolution is 7, but in circlular convolution the indices wrap around modulo- 4 instead.

```
>> x = [1 2 3 4];
>> h = [2 2 1 1];
>> yc = ifft(fft(x).*fft(h))
yc =
    15 13 15 17
```


Linear convolution and the DFT

The convolution between $x(n)$ and $h(n)$ yields $y(n)$ of length $4+4-1$. Choose a DFT length of $N=8$.

| $h(k)$ | 1 | 1 | 2 | $\underline{2}$ | \rightarrow | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x(k)$ | 0 | 0 | 0 | $\underline{1}$ | 2 | 3 | 4 | 0 | 0 | 0 | 0 | 1 | 2 | 3 |
| $y_{L}(k)$ | | | | $\underline{2}$ | 6 | 11 | 17 | 13 | 7 | 4 | 0 | | | |

```
>> x = [1 2 3 4];
>> h = [2 2 1 1];
>> yl = ifft(fft(x,8).*fft(h,8))
yl =
\begin{tabular}{llllllll}
2 & 6 & 11 & 17 & 13 & 7 & 4 & 0
\end{tabular}
```

The linear convolution is closely related to the circular convolution.

$$
\begin{align*}
y_{C}(n) & =\left\{\begin{array}{lll}
y_{L}(0)+y_{L}(4) & y_{L}(1)+y_{L}(5) & y_{L}(2)+y_{L}(6) \\
y_{L}(3)+y_{L}(7)
\end{array}\right\} \tag{27}\\
& =\left\{\begin{array}{llll}
2+13 & 6+7 & 11+4 & 17+0
\end{array}\right\} \tag{28}\\
& =\left\{\begin{array}{llll}
15 & 13 & 15 & 17
\end{array}\right\} \tag{29}
\end{align*}
$$

The linear convolution wrap around modulo-4 and sum to form the circular convolution.

Sampling the spectrum

Let

$$
\begin{equation*}
x(n)=a^{n} \cdot u(n) \quad \Rightarrow \quad X(\omega)=\frac{1}{1-a \mathrm{e}^{-\mathrm{j} \omega}} \tag{30}
\end{equation*}
$$

Read $X(\omega)$ at N frequencies and form $X(k)=X(\omega \mid \omega=2 \pi k / N)$.
The signal $x(n)$ is an infinitely long sequence, but the invers-DFT of $X(k)$ yields a finitely long sequence of length N.

What is $x_{\mathrm{DFT}}(n)=\operatorname{IDFT}\{X(k)\}$?

$$
\begin{equation*}
X(k)=\frac{1}{1-a \mathrm{e}^{-\mathrm{j} 2 \pi \cdot \frac{k}{N}}} \tag{31}
\end{equation*}
$$

Inverse-DFT yields:

$$
\begin{align*}
x_{\mathrm{DFT}}(n) & =\frac{1}{N} \cdot \sum_{k=0}^{N-1} X(k) \mathrm{e}^{\mathrm{j} 2 \pi \cdot \frac{n}{N} \cdot k} \tag{32}\\
& =\frac{1}{N} \cdot \sum_{k=0}^{N-1} \sum_{m=-\infty}^{\infty} x(m) \mathrm{e}^{-\mathrm{j} 2 \pi \cdot \frac{m}{N} \cdot k} \cdot \mathrm{e}^{\mathrm{j} 2 \pi \cdot \frac{n}{N} \cdot k} \tag{33}\\
& =\frac{1}{N} \cdot \sum_{m=-\infty}^{\infty} x(m) \cdot \sum_{k=0}^{N-1} \mathrm{e}^{\mathrm{j} 2 \pi \cdot \frac{n-m}{N} \cdot k} \tag{34}\\
& =\frac{1}{N} \cdot \sum_{m=-\infty}^{\infty} x(m) \cdot N \cdot \delta(n-m \bmod N) \tag{35}\\
& =\sum_{m=-\infty}^{\infty} x(n-m N) \tag{36}
\end{align*}
$$

The signal $x(n)$ extends to $+\infty$.

The signal $x_{\mathrm{DFT}}(n)$ is the sum of all shifted and repeated $x(n)$. The DFT size is $N=8$.

Periodicity in time

A square pulse of length L is

$$
x(n)=\left\{\begin{array}{lllll}
\underline{1} & 1 & 1 & \ldots & 1 \tag{37}
\end{array}\right\}
$$

and its DTFT and DFT are

$$
\begin{equation*}
X(\omega)=\sum_{n=0}^{L-1} x(n) \mathrm{e}^{-\mathrm{j} \omega n}=\frac{\sin \left(\omega \cdot \frac{L}{2}\right)}{\sin \left(\omega \cdot \frac{1}{2}\right)} \cdot \mathrm{e}^{-\mathrm{j} \omega \cdot \frac{L-1}{2}} \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
X(k)=\sum_{n=0}^{L-1} x(n) \mathrm{e}^{-\mathrm{j} 2 \pi \cdot \frac{k}{N} \cdot n}=\frac{\sin \left(2 \pi \cdot \frac{L}{2 N} \cdot k\right)}{\sin \left(2 \pi \cdot \frac{1}{2 N} \cdot k\right)} \cdot \mathrm{e}^{-\mathrm{j} 2 \pi \cdot \frac{L-1}{2} \cdot k} \tag{39}
\end{equation*}
$$

Let

$$
\begin{equation*}
Y_{1}(k)=X(k) \quad \Rightarrow \quad y 1(n)=\operatorname{IDFT}\left\{Y_{1}(k)\right\} \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{2}(k)=X(k) \cdot X(k) \quad \Rightarrow \quad y 1(n)=\operatorname{IDFT}\left\{Y_{2}(k)\right\}=x(n) \otimes x(n) \tag{41}
\end{equation*}
$$

```
>> N = 16;
>> L = 6; % or L=10
>> k = 0:N-1;
>> k(k==0) = sqrt(eps);
>> X = sin(2*pi*L*k/(2*N))./sin(2*pi*k/(2*N)).*exp(-j*2*pi*(L-1)*k/(2*N));
>> y1 = real(ifft(X));
>> y2 = real(ifft(X.*X));
```

What does $y_{1}(n)$ and $y_{2}(n)$ look like for $N=16$ and for $L=6$ or $L=10$?

```
>> subplot(2,1,1); stem(k, y1);
>> subplot(2,1,2); stem(k, y2);
```


A practical application

Increase the resolution in frequency by zero padding or trailing zeros.
Let

$$
x(n)=\left\{\begin{array}{lllllll}
\underline{1} & 1 & 1 & 1 & 0 & 0 & \ldots \tag{42}
\end{array}\right\}
$$

Calculate the DFT of length $N=8$ of $x(n)$.

Calculate the DFT of length $N=16$ of $x(n)$.

The DFT on matrix form (page 459-460)

Define

$$
\begin{equation*}
W_{N}=\mathrm{e}^{-\mathrm{j} 2 \pi / N}=W \tag{43}
\end{equation*}
$$

The DFT and the IDFT becomes

$$
\begin{align*}
& X(k)=\sum_{n=0}^{N-1} x(n) W^{k n} \tag{44}\\
& x(n)=\frac{1}{N} \cdot \sum_{k=0}^{N-1} X(k) W^{-k n} \tag{45}
\end{align*}
$$

Let

$$
\mathbf{x}=\left[\begin{array}{llll}
x(0) & x(1) & \cdots & x(N-1) \tag{46}
\end{array}\right]^{\mathrm{T}}
$$

and

$$
\mathbf{X}=\left[\begin{array}{llll}
X(0) & X(1) & \cdots & X(N-1) \tag{47}
\end{array}\right]^{\mathrm{T}}
$$

and

$$
\mathbf{D}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \tag{48}\\
1 & W & W^{2} & \cdots & W^{N-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & W^{N-1} & W^{2(N-1)} & \cdots & W^{(N-1)(N-1)}
\end{array}\right]
$$

We can now describe the DFT and the IDFT as

$$
\begin{equation*}
\mathbf{X}=\mathbf{D x} \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{x}=\mathbf{D}^{-1} \mathbf{X} \quad \text { or } \quad \mathbf{x}=\frac{1}{N} \cdot \mathbf{D}^{*} \mathbf{X} \tag{50}
\end{equation*}
$$

Some identities:

$$
\begin{equation*}
\mathbf{D}^{-1}=\frac{1}{N} \cdot \mathbf{D} \tag{51}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{D D}^{*}=N \cdot \mathbf{I} \tag{52}
\end{equation*}
$$

