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Introduction

Problem 1.1

Which of the following signals are periodic? If so, determine the time periods.

a) cos(0.01πn)

b) cos(π 30
105n)

c) cos(3πn)

d) sin(3n)

e) sin(π 62n
10 ).

Problem 1.5

The analog signal xa(t) is xa(t) = 3sin(100πt).

a) Draw xa(t) for 0ms ≤ t ≤ 30ms.

b) Sample the signal with Fs = 300samples/s. Determine x(n) = xa(nT ) where T = 1/Fs. Determine the fre-
quency f of x(n) and show that x(n) is periodic.

c) Draw x(n). What is the period and what does it correspond to in milliseconds?

d) Determine the minimum Fs so that when xa(t) is sampled, the max of x(n) assumes the value 3 at 0 ≤ n < N ,
where N is the time period of x(n).

Problem 1.7

An analog signal contains frequencies up to 10 kHz.

a) Which sampling frequencies can be used if we want to be able to reconstruct the signal?

b) Assume the sampling frequency Fs = 8kHz. What happens to the frequency component F1 = 5kHz?

c) Assume the sampling frequency Fs = 8kHz. What happens to the frequency component F1 = 9kHz?

Problem 1.8

An analog electrocardiogram (ECG) contains frequencies up to 100 Hz.

a) What is the Nyquist rate for the signal?

b) Which is the highest frequency component that can be uniquely represented by the sampling frequency
Fs = 250Hz?

Comment: The highest frequency component of the signal is called the Nyquist frequency and the double fre-
quency is called the Nyquist rate. Thus, the sampling frequency must be selected higher than the Nyquist rate to
avoid folding distortion.

Problem 1.11

To show the effect of folding, we do the following. We sample the signal x(t) = 3cos(100πt) + 2sin(250πt) with the
sampling frequency Fs = 200Hz, without using any analog filter before the sampling. We then listen to the signal
with the sampling frequencyFs = 1000Hz (ideal reconstruction). How does the signal look after the reconstruction?

Matlab: When recording with a sound card in a PC, the analog signal is automatically filtered with an analog
filter switching frequency Fs/2, before sampling, to avoid folding distortion. If we want to illustrate the example
above, we can, for example, compile with Fs = 1000Hz, which sets the limit frequency in the sound card filter to
500 Hz. Then we retain every fifth sample only, and we have reduced the sampling rate to 200 Hz. This corresponds
to sampling with 200 Hz but with the analog filter set at 500 Hz.

Problem 1.13

The discrete signal x(n) = 6.35cos((π/10)n) is quantized with the resolution

a) ∆ = 0.1, and

b) ∆ = 0.02.

How many bits are needed in the A/D-converter?
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Problem 1.14

Determine the bit rate (bits/s) and resolution, if a seismic signal with dynamic 1 volt is sampled with Fs = 20Hz
with an 8-bit A/D-converter. Which maximum frequency can be represented in the digital signal?

Problem E1.1

MATLAB: To achieve an echo effect, we use the following link (z−D , which delays a signal by D samples).

Michrophone A/D + D/A Speaker

z−D

y(t) x(n) y(n) x(t)

0.9

Simulate this in MATLAB and listen to the effect.

>> Fs = 10000;
>> t = (0:2*Fs -1)/Fs; % generate 2s long time vector , FS =1/10000
>> x = chirp(t, 300, 2, 800); % generate sweep sine between 300 and 800 Hz
>> z = zeros(1, 500); % generate 500 zeros
>> x1 = [x, z];
>> x2 = [z, 0.9*x];
>> y = x1+x2; % generera echo

Listen to the signal.

>> soundsc(x, Fs)
>> soundsc(y, Fs)

Select different values for x and listen to the echo effects.

Problem N1.1

Write down Euler’s formulae for cos(2πn), sin(2πn), and their derivatives.

Problem N1.2

Find the sums of the following geometric series:

a)
∑N
n=0 2n

b)
∑∞
n=0 0.5n

Problem N1.3

Find the Nyquist rate for the following signals:

a) x(t) = 3cos(150πt)

b) x(t) = 3cos(150πt) + 2sin(400πt)

c) x(t) = 3sin(100πt)cos(250πt)

Problem N1.4

Express the following signals in terms of impulse signals:

a) x(n) = nu(n)

b) x(n) = u(n+ 1)

b) x(n) = u(n− 1)

Problem N1.5

Which of the following signals are causal?

a) x(n) = u(n+ 1)

b) x(n) = u(n− 1)
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Problem N1.6

Find the following signals for the given: x(n)= {1,2,1,−3,5,8} for n= {0,1,2,3,4,5}

a) x(n+ 1)

b) x(n− 1)

c) x(2n)

d) x(0.5n)

Problem N1.7

Determine whether the following signals are energy or power signals.

a) x(n) = u(n),n ≥ 0

b) x(n) = nu(n),n ≥ 0

c) x(n) = (0.5)nu(n)

Problem N1.8

Identify the even or odd signals below.

a) x(n) = sin(n)

b) x(n) = cos(n)

b) x(n) = cot(n)

Problem N1.9

Examine the linearity and time invariance of the following signals.

a) y(n) = x(n− 1)

b) y(n) = x(n2)

c) y(n) = x2(n)

Problem N1.10

The analog signal xa(t) = 3cos(500πt) + 2sin(1000πt). Determine the following:

a) What is the Nyquist rate?

b) How will the reconstructed signal be with Fs = 400Hz, Fs = 600Hz,Fs = 1100Hz? Please comment on your
results.

Impulse Response and Convolution, Chapter 2

Problem 2.1

A time discrete signal x(n) is defined as

x(n) =


1 + n

3 −3 ≤ n ≤ −1
1 0 ≤ n ≤ 3
0 n < −3 and n > 3

(1)

a) Draw the signal x(n).

b) Draw the following alternative signal.

i) First fold (mirroring around the origin) x(n) and then delay the resulting signal by 4 samples.

ii) First delay x(n) by 4 samples and then fold the resulting signal.

c) Draw the signal x(−n+ 4).

d) Compare the results in part (b) and (c).

e) Express the signal x(n) in term of δ(n) and u(n).
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Problem 2.7

Examine the following systems with respect to the properties below.

1) Static or dynamic.

2) Linear or nonlinear.

3) Time invariant or time varying.

4) Causal or non-causal.

5) Stable or unstable.

a) y(n) = cos(x(n)).

b) y(n) =
∑n+1
k=−∞ x(k).

c) y(n) = x(n)cos(ω0n).

e) y(n) = trunc(x(n)), denotes the integer part of x(n) obtained by rounding.

h) y(n) = x(n)u(n).

j) y(n) = x(2n).

n) An ideal sampling system with input xa(t) and output x(n) = xa(t), where t = nT and −∞ < n <∞.

Problem 2.13

a) Show that
∑
n y(n) =

∑
k x(k)

∑
l h(l), where y(n) = x(n) ∗ h(n).

b) Show that the necessary and sufficient conditions for a relaxed LTI system to be BIBO stable is
∑∞
n=−∞ |h(n)| ≤

Mh <∞ for some constant Mh .

Problem 2.14

Check if the discrete time systems below are BIBO stable.

1) y(n) = y(n− 1) + x(n) for n > 0 where y(-1)=0.

4) y(n) = x(n) + x(n− 1)− x(n− 4).

Problem 2.16

Calculate the convolution y(n) = x(n) ∗ h(n) for the following signals.

1) x(n) =
{

1 1 1 1 1
}

and h(n) =
{

1 2 4
}
.

2) x(n) =
{

1 2 −1
}

and h(n) = x(n).

3) x(n) =
{

1 2 3 4 5
}

and h(n) =
{

1
}
.

4) x(n) =
{

1 1 0 1 1
}

and h(n) =
{

1 −2 −3 4
}
.

5) x(n) = 0.5nu(n) and h(n) = 0.25nu(n).

Problem 2.17

Calculate the convolution y(n) = x(n) ∗ h(n) for the following signals.

a) x(n) =
{

1 1 1 1
}

and h(n) =
{

6 5 4 3 2 1 0 0
}

b) x(n) =
{

1 1 1 1
}

and h(n) =
{

6 5 4 3 2 1 0 0
}

c) x(n) =
{

0 0 0 1 1 1 1
}

and h(n) =
{

1 1 0 0 0
}

d) x(n) =
{

0 0 1 1 1 1
}

and h(n) =
{

1 1 0
}

MATLAB: Calculate the convolutions in MATLAB (conv.m).
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Problem 2.21

Calculate the convolution y(n) = x(n) ∗ h(n) for the following signals.

a) x(n) = anu(n) and h(n) = bnu(n) for both a , b and a = b.

b) x(n) =
{

1 2 1 1
}

and h(n) = δ(n)− δ(n− 1) + δ(n− 4) + δ(n− 5).

Problem 2.35

Consider the interconnection of LTI systems as shown in the following figure.

h2(n)

x(n) h1(n) + y(n)

h3(n) h4(n)

−

a) Express the overall impulse response in terms of h1(n), h2(n),h3(n), and h4(n)

b) Determine h(n) when h1(n) =
{

0.5 0.25 0.5
}
, h2(n) = h3(n) = (n+ 1)u(n) and h4(n) = δ(n− 2).

c) Determine the response of the system in part (b) if x(n) = δ(n+ 2) + 3δ(n− 1)− 4δ(n− 3).

d) Check if the system is BIBO stable.

Problem 2.61

Compute the correlation sequences rxx(l) and cross correlation function rxy (l) for the following signal sequences:

x(n) = 1 for n0 −N ≤ n ≤ n0 +N , zero otherwise, and (2)

y(n) = 1 for −N ≤ n ≤N , zero otherwise. (3)

Problem 2.62

Calculate the autocorrelation sequences rxx(l) of the following signals.

a) x(n) =
{

1 2 1 1
}
.

b) y(n) =
{

1 1 2 1
}
.

What is your conclusion ?

MATLAB: Solve a) and b) above in MATLAB.

Problem 2.64

An audio signal generated by a loudspeaker is reflected at two different walls with the reflection coefficients r1
and r2. The signal is recorded by a microphone near the speaker. After sampling, the discrete time signal is x(n) =
s(n)+ r1s(n−k1)+ r2s(n−k2), where k1 and k2 are the delays of the echoes. Determine and draw the autocorrelation
function rxx(l) for x(n).

The Z Transform, Chapter 3

Problem N3.1

The following first order difference equation is given:

y(n) + y(n− 1) = x(n) (4)

where

x(n) = 5u(n) (5)

a) Z-transform the equation to express it in the z-domain.

b) Perform an inverse z-transform to express the original equation without y(n− 1) and x(n).
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Problem N3.2

The following second-order difference equation is given:

y(n)− 2
3
y(n− 1)− 1

3
y(n− 2) = x(n) (6)

a) Express the equation on the form Y (z) =H(z)X(z) and determine H(z).

b) Determine h(n).

Problem 3.1

Determine the Z-transform of:

a) x(n) =
{

3 0 0 0 0 6 1 −4
}

b) x(n) =


(

1
2

)n
n ≥ 5

0 n ≤ 4

Problem 3.2

Determine the Z-transform of the signals below, and draw their pole-zero patterns:

a) x(n) = (1 +n)u(n).

c) x(n) = (−1)n · 2−n ·u(n).

f) x(n) = Arn cos(ω0n+φ)u(n) 0 < r < 1.

h) x(n) =
(

1
2

)n
· [u(n)−u(n− 10)].

Problem 3.8

Use the convolution property of the Z-transform to determine the following Z-transforms:

a) Determine Y (z) expressed in X(z) for y(n) =
∑n
k=−∞ x(k).

b) Determine X(z) for x(n) = (n+ 1)u(n). Hint: show that x(n) = u(n) ∗u(n).

Problem 3.9

The Z-transform X(z) of the real signal x(n) includes a pair of complex-conjugate zeros and a pair of complex-
conjugate poles. What happens to these pairs if we multiply x(n) by ejω0n?
Hint: Use the scaling theorem in the z-domain.

Problem 3.14

Determine the inverse Z-transform of x(n), x(n) causal, of the following signals:

a) X(z) =
1 + 3z−1

1 + 3z−1 + 2z−2

b) X(z) =
1

1− z−1 + 0.5z−2

c) X(z) =
z−6 + z−7

1− z−1

d) X(z) =
1 + 2z−2

1 + z−2

g) X(z) =
1 + 2z−1 + z−2

1 + 4z−1 + 4z−2

MATLAB: Plot some of these functions for z = e jω using MATLAB.

Problem 3.16

Determine the convolution of x1(n) and x2(n) below using the z-transform.

a) x1(n) =
(

1
4

)n
·u(n− 1) and x2(n) =

[
1 +

(
1
2

)n]
u(n).

c) x1(n) = 0.5nu(n) and x2(n) = cos(πn)u(n).
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Problem 3.14

Compute the inverse Z-transform x(n), x(n) causal, of the following signals:

a) X(z) =
1 + 3z−1

1 + 3z−1 + 2z−2

b) X(z) =
1

1− z−1 + 0.5z−2

c) X(z) =
z−6 + z−7

1− z−1

d) X(z) =
1 + 2z−2

1 + z−2

g) X(z) =
1 + 2z−1 + z−2

1 + 4z−1 + 4z−2

MATLAB: Plot some of these functions for z = e jω using MATLAB.

Problem 3.16

Compute the convolution between x1(n) and x2(n) below using the Z-transform:

a) x1(n) =
(

1
4

)n
·u(n− 1) and x2(n) =

[
1 +

(
1
2

)n]
u(n).

c) x1(n) = 0.5nu(n) and x2(n) = cos(πn)u(n).

Problem 3.35

Compute the output signal y(n) = x(n) ∗ h(n) for:

a) h(n) =
(

1
3

)n
u(n) and x(n) = (1/2)n · cos(π/3n)u(n).

d) y(n) = 0.5x(n)− 0.5x(n− 1) and x(n) = 10cos(π/2 n) u(n).

Problem 3.40

The input and output signals for an LTI system are given by x(n) = 0.5nu(n) − 0.25(0.5)n−1 · u(n − 1) and y(n) =
( 1

3 )nu(n).

a) Compute the impulse response h(n) and the system function H(z).

b) Compute the difference equation.

c) Compute a realization of minimal order.

d) Is the system stable?

Problem 3.49

Use the single-sided Z-transform to compute y(n), where n ≥ 0 for the following cases:

b) y(n)− 1.5y(n− 1) + 0.5y(n− 2) = 0, y(−1) = 1, y(−2) = 0.

c) y(n) = 0.5y(n− 1) + x(n), x(n) = (1/3)nu(n), y(−1) = 1.

d) y(n) = 0.25(y(n− 2) + x(n), x(n) = u(n), y(−1) = 0, y(−2) = 1.

Problem E3.1

Combine each pole zero plot with the corresponding impulse response. How is the impulse response affected by
the distance beween the pole and the unit circle? How is the impulse response affected by double poles?
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× 2

× 2

Pole zero A

5 10 15 20 25 30

−2

−1

0

1

2

Impulse response I

Pole zero B

5 10 15 20 25 30

−2

−1

0

1

2

Impulse response II

Pole zero C

5 10 15 20 25 30

−100

0

100

Impulse response III

Problem E3.2

A second-order, linear, and time-invariant system is defined by:

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2 (7)

a) Compute the output signal y(n) when the input signal is x(n) = 3sin
(
π
2 n

)
u(n) where:

y(−1) = 1/3 (8)

and

b0 = 0 b1 = 1/5 b2 = 0 (9)

a1 = 1/2 a2 = 0 (10)

b) Let the input signal be x(n) = sin(2πf0n) för −∞ < n < ∞. The coefficients are chosen so that the output
becomes y(n) = 0 för −∞ < n <∞. This occurs when

b0 = b1 = b2 = 2 (11)

and

a1 = −
√

2 a2 = 1/4 (12)

What is the frequency f0 in the input signal?
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c) Again, the input signal is x(n) = sin(2πf0n), −∞ < n <∞. When the coefficients are

b0 = 1 b1 = 1 b2 = 1/4 (13)

and

a1 = −1 a2 = 1 (14)

the output signal becomes y(n) = A0 sin(2πf0n+θ0)+A1 sin(2πf1n+θ1) för −∞ < n <∞. What is the frequency
f1?

Problem E3.3

An LTI system is described by the difference equation

y(n)− y(n− 1) +
3

16
y(n− 2) = x(n) (15)

Compute the output signal y(n) when

x(n) =
(1

2

)n
·u(n) + sin

(
2π

1
4
n
)
−∞ < n <∞ (16)

Problem E3.4

A system is described by the difference equation y(n)− y(n− 1) + 0.5y(n− 2) = x(n). The initial values are y(−1) = 0
and y(−2) = 2, and the input signal is x(n) = u(n). When n ≥ 0 compute

a) the zero input solution, yzi (n).

b) the zero state solution, yzs(n).

c) the transient solution, ytr (n).

d) the stationary solution, yss(n).

Problem E3.5

A system is described by the difference equation

y(n)− 1
4
y(n− 1) = x(n) (17)

Compute the output signal y(n) when

x(n) =

sin
(
2π 1

4 n
)

n < 0
0 n ≥ 0

(18)

The Fourier Transform, LTI Systems, and Sampling, Chapter 4, 5, and 6

Problem N4.1

The transfer function of a system is given as

H(z) =
1− z−1

(1− 0.5z−1)(1 + 0.5z−1)

Find the output signal y(n) if the input signal is given by

x(n) = u(n− 1) + sin(2π
1
4
n+

π
4

)

Problem N4.2

The transfer function of a system is given as

H(z) =
1− 0.5z−1

1− z−1 (19)

Find the output signal if the input signal is given by

x(n) = 0.5n−1u(n− 1) + sin(2π
1
3
n) (20)
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Problem 4.8

Two discrete signals sk(n) and sl (n) are orthogonal over an interval [N1,N2] if

N2∑
n=N1

sk(n)s∗l (n) =
{
Ak k = l
0 k , l

(21)

If Ak = 1 the signal are orthonormal.

a) Show the relation

N−1∑
n=0

e j2π knN =
{
N k = 0 k = ±N k = ±2N .. .
0 otherwise

(22)

b) Illustrate a) for N = 6 by drawing sk(n) = e j2π knN for k = 1,2,3,4,5,6 and n = 0,1,2,3,4,5.

c) Show that harmonic signals s(n) = e j2π knN arer orthogonal over any interval with length N .

Problem 4.9

Compute the Fourier transforms of the following signals

a) x(n) = u(n)−u(n− 6).

b) x(n) = 2nu(−n).

c) x(n) = (0.25)nu(n+ 4).

d) x(n) = (αn sin(ω0n))u(n) för |α| < 1.

g) x(n) =
{
−2 −1 0 1 2

}
.

Problem 4.10

Compute the time-domain signal of the Fourier transform

a) X(ω) =
{

0 0 ≤ω ≤ω0
1 ω0 < ω ≤ π

b) X(ω) = cos2ω

The Fourier transforms are symmetric for negative frequencies so that the signals have real values.

Problem 4.12

Compute the time-domain signal of the Fourier transform

c) X(ω) =
{

2 ωc −W/2 ≤ |ω| ≤ωc +W/2
0 otherwise

Problem 4.14

The sequence x(n) is given by x(n) =
{
−1 2 −3 2 −1

}
and its Fourier transform is X(ω). Compute the

following, without calculating X(ω) explicitly

a) X(0)

b) argX(ω)

c)
∫ π

−π
X(ω)dω

d) X(π)

e)
∫ π

−π
|X(ω)|2 dω

MATLAB: Compute X(ω) and plot |X(ω)| and argX(ω).
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Problem 5.2

a) Compute and draw the Fourier transform WR(ω) for a rectangular window

wR(n) =
{

1 0 ≤ n ≤M
0 otherwise

(23)

b) Compute and draw the Fourier transform for a triangular window wT (n)

wT (n) =


n 0 ≤ n ≤M/2
M −n M/2 < n ≤M
0 otherwise

(24)

by using the convolution of two rectangular windows as in a.

MATLAB: Plot WR(ω) for M = 2, M = 4, and M = 5.

Problem 5.17

A time-discrete circuit is given by the figure with a = −2cos(ω0)

a) Compute the impulse response h(n).

b) Draw |H(ω)| and argH(ω).

c) Compute y(n) when x(n) = 3cos(π/3 n+π/6) for −∞ < n <∞ and ω0 = π/2.

x(n) z−1 z−1 + y(n)

a

Problem 5.25

Draw |X(f )| corresponding to the following pole-zero configurations.

× 2

Pole Zero A

× 2

Pole Zero B

× 8

Pole Zero C Pole Zero D

Problem 5.26

Design a filter that blocks the frequency ω0 = π/4 and compute the output signal when the input signal is x(n) =
sin(π/4 n)u(n) for n = 0,1,2,3,4.

Problem 5.35

A second-order system has a double pole at p1,2 = 0.5 and two zeros at z1,2 = e±j3π/4. Compute the gain so that
|H(0)| = 1.

Problem 5.39

Compute the 3 dB bandwidth for the filters where 0 < a < 1.

H1(z) =
1− a

1− az−1 (25)

H2(z) =
1− a

2
· 1 + z−1

1− az−1 (26)

(27)
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MATLAB: Plot the amplitude functions in MATLAB and estimate the bandwidths from the plots.

Problem E4.1

Design the circuit below so that the constant amplification is 1 and the frequencies ω = π/2 and ω = π are blocked.
Compute the amplitude and phase functions.

+ + + y(n)

x(n) z−1 z−1 z−1

b0 b1 b2 b3

Problem E4.2

To create an echo effect, we use the circuit below.

x(n) + y(n)

z−D +

z−2D

a) Compute the poles and zeros for D = 500.

b) Compute and draw the amplitude function |H(f )|.

Problem E4.3

To create an echo effect, we use the circuit below.

x(n) + y(n)

z−D
0.9

a) Compute the impulse response.

b) Compute the amplitude function |H(f )|.

c) Compute the poles and zeros for D = 500.

Problem E4.4

The input signal to the system below is x(t) = cos(2π1000t) + cos(2π6000t). The impulse response is h(n) = u(n)−
u(n− 8). The sampling rate is 8 kHz.

x(t) Sampling × h(n) × Reconstruktion y(t)

cos
(
π · 1

4 ·n
)

cos
(
π · 1

4 ·n
)

Compute the output signal y(t) for ideal reconstruction.

MATLAB: Simulate the system in MATLAB. Use a sound signal.

Problem N4.3

During a vocal recording, a poorly insulated wire picked up interference from the 50 Hz power line, resulting in
an unwanted buzzing tone in the final recording. The recording used a 44100 Hz sample rate.

a) Design a notch filter with a single zero- and pole-pair that would reduce the buzzing tone as much as possible.
(Assume that a pole radius of 0.9 gives adequate performance. A polar form-description of the filter is
sufficient.)

b) A sharp "S"-sound with a frequency of 3000 Hz was also noticed in the final recording. Add a single zero-
and pole-pair to the filter from a) to reduce it as much as possible. (Assume that a pole radius of 0.9 gives
adequate performance. A polar form-description of the filter is sufficient.)
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Sampling

Problem E4.5

Assume a continuous signal xa(t) = e−10·t ·u(t), t in seconds.

a) Compute the Fourier transform Xa(F) and |Xa(F)|2.

b) We sample the signal with Fs = 100Hz. Before the sampling, we filter it with an anti-aliasing filter. Assume
that this is an ideal low pass filter with a cutoff frequency of Fs/2 = 50Hz. How much of the energy in the
signal xa(t) is blocked by the filter?

c) The filtered signal is sampled with Fs. Compute the absolute value of the Fourier transform of the sampled
signal y(n). Also compute the Fourier transform of the sampled signal without the anti-aliasing filter.

Problem E4.6

Compute the output signal from the circuit below when the input signal is xa(t) = 2 · cos(2π · F0t) då F0 = 600Hz
and Fs = 1000Hz.

x(t) A/D (−1)n ↑ ×2 D/A y(t)
x(n) z(n) y(n)

The sign change performs the operationx1(n) = (−1)nx(n) and the collector

y(n) =

z
(
n
2

)
n even

0 n odd
(28)

The reconstruction is ideal with the sampling rate 2Fs.

The Discrete Fourier Transform DFT, Chapter 7

Problem 7.1

The first five values in an eight-point DFT of a real sequence are given by{
0.25 0.125− j0.3018 0 0.125− j0.0518 0

}
(29)

Compute the remaining three points.

MATLAB: Check the result in MATLAB.

Problem 7.2

Compute the circular convolution between the following signals(N = 8)

a) x1 =
{

1 1 1 1 0 0 0 0
}

and x2 = sin( 3π
8 n) for 0 ≤ n ≤N − 1.

Problem 7.3

Given an N-point DFT X(k), 0 ≤ k ≤N − 1 of x(n), ≤ n ≤N − 1. Define

X0(k) =
{
X(k) 0 ≤ k ≤ kc N − kc ≤ k ≤N − 1
0 kc < k < N − kc

(30)

Compare x0(n) = IDFT {X0(k)} with x(n). Vhat happens?

Problem 7.4

The sequences x1(n) = cos 2π
N n and x2(n) = sin 2π

N n are given for 0 ≤ n ≤N − 1.

a) Compute the circular convolution between x1(n) and x2(n).

b) Compute the circular correlation between x1(n) och x2(n).

c) Compute the circular auto-correlation for för x1(n).

d) Compute the circular auto-correlation for för x2(n).
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Problem 7.7

The sequence x(n), 0 ≤ n ≤ N − 1, has the DFT X(k). Compute the DFTs of the following sequences, using terms of
X(k)

1) xc(n) = x(n)cos
(
2π · k0

N ·n
)
.

2) xs(n) = x(n)sin
(
2π · k0

N ·n
)
.

Problem 7.8

Compute the circular convolution between x1(n) =
{

1 2 3 1
}

and x2(n) =
{

4 3 2 2
}
. Compare with

the linear convolution.

Problem 7.9

Compute the circular convolution between x1(n) =
{

1 2 3 1
}

and x2(n) =
{

4 3 2 2
}

by using DFT and
IDFT.

Problem 7.10

Compute the energy for the sequence x(n) = cos
(
2π · kN ·n

)
for 0 ≤ n ≤N − 1, where k is an integer.

MATLAB: Compute the energy in MATLAB by using fft.

Problem 7.11

The sequence x(n) =
{

1 1 1 1 0 0 0 0
}

has the DFT X(k). Compute the DFTs of the following se-
quences:

a)
{

1 0 0 0 0 1 1 1
}
.

b)
{

0 0 1 1 1 1 0 0
}
.

Problem 7.18

The input signal to an LTI system H(ω) is x(n) =
∑∞
k=−∞ δ(n− kN ). We compute an N-point DFT for for the output

signal for the points 0 ≤ n ≤N − 1. Compute the connection between Y (k) and H(ω).

Problem 7.23

Compute the N-point DFT for

a) x(n) = δ(n)

b) x(n) = δ(n−n0), 0 < n0 < N

c) x(n) = an, 0 ≤ n ≤N − 1

d) x(n) =
{

1 0 ≤ n ≤N/2− 1 N even
0 N/2 ≤ n ≤N − 1

e) x(n) = e j2π/N k0n, 0 ≤ n ≤N − 1

f) x(n) = cos(2π/N k0 n), 0 ≤ n ≤N − 1

g) x(n) = sin(2π/N k0 n), 0 ≤ n ≤N − 1

h) x(n) =
{

1 n even
0 n odd 0 ≤ n ≤N − 1

Problem 7.24

Given x(n) =
{

1 2 3 1
}
. Compute the 4-point DFT of x(n) by solving a 4th-order equation system for the

inverse DFT.
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Problem 7.25

a) Compute the Fourier transform of x(n) =
{

1 2 3 2 1 0
}
.

b) Compute the six-point DFT of v(n) =
{

3 2 1 0 1 2
}
.

c) Compare X(k) and V (k) i a) och b).

Problem N5.0

Solve the following convolution using the overlap-and-add convolution method.

x(n) = [3,1,−1,4,5,7,6,2,1,0,3,4]
h(n) = [1,2,0]

Problem N5.1

Solve the following convolution using the overlap-and-add convolution method.

x(n) = [1,1,−1,−5,3,0,1,3,−1,0]
h(n) = [0,−1,2,4]

Problem E5.1

Compute and draw |X(k)| where X(k) is the eight-point DFT of x(n) with x(n) =
{

1 1 1 0 0 0 0 1
}

Problem E5.2

Let X(k) be the eight-point DFT of x(n) =
{

0 1 1 3 8 7 2 2
}
.

a) Compute y(n) = IDFT {X∗(k)}.

b) Compute y(n) = IDFT
{
(−1)k ·X(k)

}
.

MATLAB: Check the calculations in MATLAB with fft and ifft. Let x(n) be a sound signal and listen to y(n) in
a) and b).

Problem E5.3

The input signal x(n) to the system y(n) = ay(n−1) +x(n) where 0 < a < 1 is periodical with the period N . Compute
the impulse response for an FIR filter, which gives the same stationary solution as the system above with the input
signal x(n).

Problem E5.4

The student Hans is deeply interested in signal processing and finds a tuning fork. Sadly, there is no information
about what pitch the tuning fork has. Hans decides to use a spectral analyzer. This machine is digital and performs
a DFT on the input signal. Hans sets the spectral analyzer from 0 Hz to 200 Hz (sampling rate 400 Hz) and sees
a top at the frequency 138 Hz. Which values can the pitch of the tuning fork have? Give a motivation for your
answer.

Problem E5.5

Below are four sequences xi (n) (1–4) and eight sequences Xj (k) (a–h). Choose the correct pairs x(n)←→ X(k).

1
{

1 + j 0 0 0
}

2
{

0.5 0.5 0.5 −0.5
}

3
{

1 + j j 0 1
}

4
{

0.75 0.25 −0.25 0.25
}

a
{

1 1 0 0
}

b
{

j 0 j 0
}

c
{

1 + j 1 + j 1 + j 1 + j
}

d
{

j 0 −j 0
}

e
{

1 −j j 1
}

f
{

1 −j 1 j
}

g
{

2 + 2j 2 + 2j 0 0
}

h
{

1 1 0 1
}

MATLAB: Use MATLAB to check the result.
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Problem E5.6

Given the impulse response

h(n) =
1
4
δ(n) +

1
4
δ(n− 1) +

1
4
δ(n− 2) +

1
4
δ(n− 3) (31)

a) Compute the Fourier transform. Compute the DFT for N ≥ 4. Connection?

b) What is H(k) for k = 0 . . .3 when N = 4? What is hp(n) = IDFT {H(k)}?

Problem E5.7

The following two signals are given

−4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

Signal x(n)

−4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

Signal y(n)

The Fourier transforms of the signals are sampled in the points f = k/N för k = 0 . . .N − 1 where N = 5. How is
Y (k/N ) related to X(k/N )?

Problem E5.8

The impulse response to an LTI system is

h(n) = δ(n) + δ(n− 1) +
1
2
δ(n− 2) (32)

and the input signal is

x(n) = δ(n) + δ(n− 1) (33)

a) Compute the output signal with convolution.

b) Compute the output signal with the Fourier transform.

c) Let f = k/N för k = 0 . . .N −1 in the expression for Y (f ). If N is less than a certain number M there is aliasing
in the time domain. Conclusion? How large is M? How large is M in the general case, when the impulse
response has length P and the input signal has length Q ?

Problem E5.9

The sequence h(n) is the impulse response to a transversal filter of order L with the coefficients bk , k = 0 . . .L. The
signal x(n) is a truncated step function with length Q, that is,

x(n) =
{

1 n = 0 . . .Q − 1 Q > L+ 1
0 otherwise

(34)

We want to compute the output signal from the filter, but mistakenly use the DFT length N = Q instead of N ≥
Q+ P −1 =Q+L, where P is the length of h(n)). Given this choice of N compute the erroneous output signal yp(n),
n = 0 . . .N − 1.
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Problem E5.10

The signals x(n) and h(n) in the figures are the input signals and the impulse responses to an LTI system. We want
to compute the output signal y(n) = h(n) ∗ x(n) with an eight-point DFT. This can be done by splitting the input
signals in segments of length four. Do this and compute each output signal segment with a convolution.

2 4 6 8 10 12 14

−2

0

2

4

6

Signal x(n)

2 4 6 8 10 12 14

−2

0

2

4

6

Signal h(n)

Problem E5.11

We are given an infinite sequence x(n) = ( 1
2 )nu(n) with the Fourier transform X(f ). From this, we form a finite

sequence y(n) so that y(n) = 0 where k < 0 and k > 9 by computing

y(n) = IDFT {Y (k)} n = 0 . . .9 (35)

where

Y (k) = X(f )|f = k
10

k = 0 . . .9 (36)

Compute y(n).

Problem E5.12

It is possible to compute filters with the overlap-and-save-method. The input signal x(n) is split in segments with
the length N

xi (n) = x(n+ i(N −M + 1)) 0 ≤ n ≤N − 1 (37)

where M is the length of the filter’s impulse response. For each segment we calculate

Xi (k) = DFT {xi (n)} (38)

and

yi (n) = IDFT {Xi (k) H(k)} (39)

where H(k) is the DFT {h(n)}. Decide how yi (n), i = 0,1,2 . . . shoudl be combined to give y(n) = x(n)∗h(n). Show this
in a figure.

Realizations, Chapter 9

Problem 9.3

Compute the system function and impulse response for the following circuit:
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x(n) + + + y(n)

z−1

3

2

0.5 2

Problem 9.9

Compute realizations in Direct Form I, Direct Form II, cascade form, and parallel form for the systems below.

a) y(n) =
3
4
y(n− 1)− 1

8
y(n− 2) + x(n) +

1
3
x(n− 1).

f) y(n) = y(n− 1)− 1
2
y(n− 2) + x(n)− x(n− 1) + x(n− 2).

Which of the systems are stable?

Problem 9.15

Compute the parameters Km for a lattice FIR filter with the equation

H(z) = A2(z) = 1 + 2z−1 +
1
3
z−2 (40)

MATLAB: Compute the parameters with MATLAB.

Problem 9.19

a) Compute and draw the zeros for the lattice FIR filter with the parametersK1 = 1
2 , K2 = −1

3 , and K3 = 1.

b) Same as in a) with K3 = −1.

c) In a) and b) all zeros are on the unit circle. Can this result be generalized? How?

d) Compute the phase function for the filters in a) and b). Conclusion?

Examples of Filter Design

Problem E8.1

Given the FIR filter below.

+ + + y(n)

x(n) z−1 z−1 z−1

a) Compute poles and zeros.

b) Compute and draw the amplitude function |H(f )|.

c) Compute and draw the phase function.

d) At what frequencies are |H(f )| = 0?

e) What type of filter (LP, BP, HP) is it?
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Problem E8.2

Given the FIR filter below.

+ + + y(n)

x(n) z−1 z−1 z−1

−1 −1

a) Compute poles and zeros.

b) Compute and draw the amplitude function |H(f )|.

c) Compute and draw the phase function.

d) At what frequencies are |H(f )| = 0?

e) What type of filter (LP, BP, HP) is it?

Problem E8.3

We want to filter a signal by creating an output signal as the moving average of the five last values, like this:

y(n) =
1
5

∑
x(k) = 0.2[x(n− 4) + x(n− 3) + x(n− 2) + x(n− 1) + x(n)] (41)

a) Compute the impulse response h(n).

b) Compute the amplitude function |H(f )|.

c) Draw |H(f )| for 0 ≤ f ≤ 1.

Problem E8.4

Using the signalx(n) = sin(π/2n) you want to create the signal y(n) = sin(π/2n+π/3). Design a circuit that accom-
plishes this. Try with a FIR filter.

Problem E8.5

Compute the impulse response h(n) for a circuit with the following demands:

• |H(0)| = |H(−1/5)| = |H(1/5)| = 1

• H(2/5) =H(−2/5) = 0

• h(n) is real

• h(n) is causal

• the circuit has linear phase

MATLAB: Plot the spectrum in MATLAB and see if the demands are fulfilled.

Problem E8.6

A filter H(z) is given by N poles in origo and N zeros in z = −1. The amplification for a stationary signal is 1 (0 dB).
Compute the values of N for which the damping demands in the figure are fulfilled and compute the impulse
response for the minimal value of N .

MATLAB: Plot the spectrum in MATLAB and see if the demands are fulfilled.

0 0.5

0

0.1 0.4

−3

−20
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An Example with a FIR Filter and the Windowing Method

Design a FIR filter with the damping demand below using the windowing method and the equi-ripple method.

0 0.5

0

0.1 0.15

−3

−40

First select a window for the FIR filter. Hamming has the largest side lobe, −55 dB. Thus, we choose a Hamming
window. An approximate value for M is found in Table 5.2:

1.7
M
≈ 0.15− 0.1 ⇒ M = 34 (42)

Note that Table 5.2 defines the lower point at −6 dB, which means that the correct value is somewhat larger. A
better value is seen in Figure 36. At the lower limit f = 0.1, |H(f )| = −3dB, we get

x = −0.4 = (f − fc) ·M = (0.1− fc) ·M (43)

and at f = 0.15, |H(f )| = −40dB we get

x = 1.5 = (f − fc) ·M = (0.15− fc) ·M (44)

If we solve for fc and M we get

fc = 0.110 (45)

M = 38 (46)

Now let us use the equi-ripple method. The pass band ripple is

20log
1 + δp
1− δp

= 3 ⇒
1 + δp
1− δp

= 100.15 = 1.41 ⇒ δp =
0.41
2.41

= 0.17 (47)

and

20logδs = −40 ⇒ δs = 0.01 (48)

D∞ =
−20log

√
0.17 · 0.01− 13
14.6

= 1.0

∆f = 0.15− 0.1 = 0.05
⇒ N =

1.0
0.05

+ 1 = 21 (49)

The equi-ripple filter gives the lower degree with the band-block damping 40 dB in the entire blocked band, while
the FIR filter with a Hamming window has a larger side lobe, with a damping of around 55 dB.

Problem E8.7

Compute the impulse response for a realizable filter fulfilling the demands below. The filter should have as low
order as possible and exact linear phase.

0 0.5

0

0.1 0.15

−6

−50
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Problem E8.8

Design a FIR low pass filter fulfilling the demads given in the figure Hd (f ) with the cutoff frequency fc. Use a
Hamming window, which should give a band damping of at least 40 dB. Compute fc to fulfill the demands with a
minimal M (odd). Design a realization.

0 0.5

0

0.2 0.25

−3

−40

MATLAB: Plot the spectrum in MATLAB and see if the demands are fulfilled.

Problem E8.9

Design a high pass filter according to the figure below. At the frequency 0.16 the damping must be 3dB. Design
the impulse response for a FIR filter that fulfills the demands.

0 0.5

0

0.1 0.16

−3

−40

Problem E8.10

Design a band pass filter according to the figure below. At the frequencies 0.1 and 0.25 the damping must be 3 dB.
Design the impulse response for a FIR filter that fulfills the demands.

0 0.5

0

0.05 0.1 0.250.275

−3

−20

−40

MATLAB: Plot the spectrum in MATLAB and see if the demands are fulfilled.

Problem E8.11

The bandwidth for a band pass filter is defined as the difference in frequency between the two points, where the
amplitude is |H(ω)| = 1/

√
2. Compute the bandwidth for an FIR filter with the impulse response

h(n) =
(
0.4933 · sin(0.2466π(n− 20))

0.2466π(n− 20)
· cos(π0.4192(n− 20))

)
(50)

·
(
0.54 + 0.46 · cos

(
2π(n− 20)

40

))
(51)

för 0 ≤ n ≤ 40.
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Problem E8.12

Two FIR filters are coupled in a cascade H(z) =H1(z) ·H2(z) where

H1(z) = 1− 2r cos(θ)z−1 + r2z−2 (52)

Compute H2(z) so that the entire system has linear phase and the stationary amplification|H(0)| = (1 − 2r cos(θ) +
r2)2. Give argH(f ) for 0 ≤ f ≤ 1/2.

Problem E8.13

We wish to study a band pass signal with components in 2.5 MHz–3 MHz. The signal is sampled the the frequency
Fs = 10MHz and AD converted. However, the signal has generated overtones in 5 MHz–6 MHz and it has added
disturbances in 9 MHz–10 MHz. We want to suppress the disturbances with a FIR filter with a damping of at least
40 dB. The filter should not affect the signal with more than 3 dB.
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