

Learning outcomes

- After this lecture the student should
- understand the concept of one-way functions and specifically trapdoor one-way functions,
- understand what a two-key public-key cryptosystem is and how trapdoor oneway functions can be used to create such a system,
- understand Euler's totient function and how it can be used to create a trapdoor one-way function,
- know how to use Euclid's algorithm to calculate the greatest common divisor (gcd) of two natural numbers and understand the relation to Bezout's identity,
- be able to perform the basic operations of Rivest-Shamir-Adelman (RSA) encryption and decryption, and
- understand how a digital signature is created using trapdoor one-way functions.

One-way functions

It is possible to exchange secret keys without using a secure channe!!

Diffie and Hellman introduced the concepts of one-way functions and trapdoor one-way functions.
A remarkable idea that dramatically changed the cryptological research.
A one-way function is a function $y=f(x)$ that is "easy" to compute for all x, but it is computationally infeasible to find x if you know only $y=f(x)$.

Trapdoor one-way functions

- A trapdoor one-way function is a family of invertible functions f_{K} such that
- when K is known, we can easily find algorithms E_{K} and D_{K} that compute $f_{K}(x)$ and its inverse $f_{K}^{-1}(y)$, respectively, for all x and y,
- when K is not known, it is computationally infeasible to compute $f_{K}^{-1}(y)$, even if we do know E_{K}.
- The algorithm E_{K} depends on a secret trapdoor parameter T such that D_{K} and, hence, $f_{K}^{-1}(y)$ is easy to find when we know T but it is computationally infeasible when we do not know T.

A public-key cryptosystem

Using a trapdoor one-way function we can design a socalled two-key or public-key cryptosystem.
Such a system can be arranged by the intended receiver (!) of encrypted information as follows.
The receiver selects his trapdoor one-way algorithm E_{K}, keeps the trapdoor parameter T secret, but publishes openly the encryption algorithm E_{κ}.

A public-key cryptosystem

Some background

 theory

Modular arithmetic

- Modular arithmetic is an arithmetic system for integers, where numbers "wrap around" upon reaching a certain value - the modulus.
- Congruence: For a positive integer n, two numbers a and b are said to be congruent modulo n if their difference $a-b$ is an integer multiple of n. We denote this as

$$
a \equiv b \quad(\bmod n)
$$

which implies, for some integer k,

$$
a=k n+b
$$

Modular arithmentic (examples)

$$
\begin{array}{rl|r}
a \equiv b & (\bmod n) & a=k \cdot n+b \\
\hline \hline 2 \equiv 0 & (\bmod 2) & 2=1 \cdot 2+0 \\
12 \equiv 0 & (\bmod 4) & 12=3 \cdot 4+0 \\
13 \equiv 1 & (\bmod 4) & 13=3 \cdot 4+1 \\
13 \equiv 2 & (\bmod 11) & 13=1 \cdot 11+2 \\
-8 \equiv 7 & (\bmod 5) & -8=-3 \cdot 5+
\end{array}
$$

Greatest common divisor (gcd)

- The greatest common divisor (gcd) of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers.
- Example: $\operatorname{gcd}(24,54)=6$, since

$$
\begin{aligned}
& \text { Integers dividing } 24=2^{3} \cdot 3 \text { are } 1,2,3,4,6,8,12 \\
& \text { Integers dividing } 54=2 \cdot 3^{3} \text { are } 1,2,3,6,9,18,27
\end{aligned}
$$

Euclid's algorithm to calculate gcd

Given two natural numbers n_{1} and n_{2}, where $n_{1}>n_{2}$. Divide continually the larger by the smaller as follows:

$$
\begin{array}{ll}
n_{1}=q_{0} n_{2}+r_{0} & \left(\begin{array}{l}
\text { dividing } \left.n_{2} \text { into } n_{1}\right) \\
n_{2}=q_{1} r_{0}+r_{1}
\end{array}\right. \\
r_{0}=q_{2} r_{1}+r_{2} & \left(\text { dividing } r_{0} \text { into } n_{2}\right) \\
r_{1}=q_{3} r_{2}+r_{3} \quad & \text { (dividing } \left.r_{1} \text { into } r_{0}\right) \\
r_{i-2}=q_{i} r_{i-1}+r_{i} & \text { (etc.) } \\
r_{i-1}=q_{i+1} r_{i} &
\end{array}
$$

Then r_{i} is the greatest common divisor of n_{1} and n_{2}, denoted

$$
r_{i}=\operatorname{gcd}\left(n_{1}, n_{2}\right)
$$

Relatively prime (coprime) numbers

- Two integers a and b are said to be relatively prime (coprime) if the only positive integer that divides both of them is 1 , i.e., if their $\operatorname{gcd}(a, b)=1$.

Consequently, any prime number that divides one does not divide the other.

Euler's totient function

Euler's totient function, denoted $\Phi(n)$, is the number of integers between 1 and n that are relatively prime with n, that is, they have no common factors with n.

General case: Given the (unique) prime factorization of n, we can calculate Euler's totient function as

$$
\Phi(n)=\Phi\left(p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{m}^{k_{m}}\right)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{m}}\right)
$$

Important special case: When n is a product of two primes $n=p \cdot q$ then

$$
\Phi(n)=\Phi(p \cdot q)=\Phi(p) \Phi(q)=(p-1)(q-1)
$$

Euler's totient function (examples)

"General" case

$$
\Phi(12)=\Phi\left(2^{2} 3\right)=12\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=4
$$

Multiples of 2 not rel. prime

Multiples of 3 not rel. prime
Special case with two primes

$$
\Phi(15)=\Phi(3 \cdot 5)=(3-1) \cdot(5-1)=8
$$

Multiples of 3 not rel. prime

Multiples of 5 not rel. prime

A useful trapdoor one-way function

Theorem 6.2 (Euler) Let a and n be two integers that are relatively prime. Then

$$
\begin{equation*}
a^{\phi(n)} \equiv 1 \quad(\bmod n) \tag{6.17}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
R_{n}\left(a^{\phi(n)}\right)=1 \tag{6.18}
\end{equation*}
$$

where $R_{d}(i)$ denotes the remainder r when the integer i is divided by the divisor d, that is, $i=$ $q d+r, 0 \leq r<|d|$.

Bézout's identity

Given integers n_{1} and n_{2} not both zero, there exist integers s and t such that

$$
\operatorname{gcd}\left(n_{1}, n_{2}\right)=s n_{1}+t n_{2}
$$

Use Euclid's algorithm backwards to find s and t

A public-key encryption algorithm

The RSA algorithm

1. Choose two distinct prime numbers p and q.
2. Compute $n=p q$. n is used as the modulus for both the public and private keys. Its length, usually expressed in bits, is the key length.
3. Compute $\Phi(n)=\Phi(p) \Phi(q)=(p-1)(q-1)$ where Φ is Euler's totient function.
4. Choose an integer e such that $1<e<\Phi(n)$ and $\operatorname{gcd}(e, \Phi(n))=1$; i.e., e and $\Phi(n)$ are coprime.

The public key consists of the modulus n and the public encryption exponent e
Source: Wikipedia

The RSA algorithm cont.

5. Determine d as $d \equiv e^{-1}(\bmod \Phi(n))$; i.e., d is the multiplicative inverse of e (modulo $\varphi(n)$), i.e. solve for d given $d \cdot e \equiv 1(\bmod \Phi(n))$. d is kept as the private key exponent.
The private key consists of the private decryption exponent d, which must be kept secret and is used together with the modulus n to calculate the clear text.
The parameters p, q, and $\Phi(n)$ must also be kept secret because they can be used to calculate d.

Source: Wikipedia

RSA encryption

- Alice transmits her public key (n, e) to Bob and keeps the private key secret.
- Bob wishes to send a message p to Alice. He first turns p into an integer P, such that $0 \leq P<n$. He then computes the ciphertext C corresponding to $C=P^{e}(\bmod n)$
- Bob then transmits C to Alice.

RSA decryption

- Alice can recover P from C by using her private key exponent d via computing $P \equiv C^{d}(\bmod n)$
- Given P, Alice can recover the original message p.

Since an essentially larger amount of computation is involved in a two-key cryptosystem than in a comparably secure single-key cryptosystem, two-key cryptosystems are mainly used in hybrid systems.

Conclusion

Everybody can look up the public parameters n and e, but only those who know at least one of the secret parameters p, q, and d that are included in the trapdoor parameter T can decrypt.
If the enemy cryptanalyst, however, can factor n, then he can easily compute $\Phi(n)$ and obtain the secret decryption exponent d, and, hence, obtain the plaintext.

Digital signatures

A trapdoor one-way function can be used to identify a sender - to obtain a digital signature - but at the expense of giving up secrecy.
The sender who would like to create an unforgeable digital signture uses his secret algorithm D_{k} and creates a ciphertext by using, for example, his name as plaintext.

Anybody can use the senders public algorithm E_{K} to decrypt the ciphertext, and, hence, recover the sender's plaintext.

Digital signatures

