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Methods of channel coding

• For channel coding (error correction) we have two main
classes of codes, namely:

– block codes, which we first encountered when we
discussed Shannon's channel coding theorem

– convolutional  codes.
We shall briefly discuss both classes.
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A schematic communication system
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The binary field

For the following calculations we use the binary field, for
which the rules of addition and multiplication are those of
modulo-two arithmetic:

Notice that since 1+1=0, subtraction is the same as
addition, which is very convenient
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The error pattern

Suppose that the codeword is transmitted
over the binary symmetric channel and that
is the possibly erroneously received version of it, then the
error pattern is defined to be the N-tuple
that satisfies

If we have one error, that is, e consists of one 1 and N-1
0's, then one component in v is altered.
Two errors cause two altered components in v.
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Minimum distance

The minimum distance, dmin, of a block code B is the
minimum of all the  distances between two non-identical
codewords of the code.
If the sum of any two codewords is a codeword, then the
code is said to be linear. For a linear block code the
minimum distance is simply equal to the least number of 1's
in a nonzero codeword

In general, a block code with minimum distance dmin will
correct up (dmin-1)/2 errors.
Alternatively, it can be used to detect up to dmin-1 errors.
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The (7,4) Hamming code

Hamming constructed a class
of single-error-correcting linear
block codes with minimum
distance dmin=3.
In the table we specify an
encoder mapping for the (7,4)
Hamming code with M=24=16
codewords.
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Example

Assume that we would like to transmit the information 4-
tuple u=(1011) over a binary symmetric channel.
Then we encode it, by using the mapping in the table, and
obtain the codeword v=(0110011).
Let, for example, the sixth position be altered by the
channel. Thus, we receive r=(0110001).
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Example cont

To correct the error we add position-wise modulo-two rows
2, 3, and 7 (the positions corresponding to the 1's in r) and
obtain

that is, the binary representation of 6; we flip the sixth
position in r=(0110001) and obtain the estimate of the
codeword which  corresponds to the
information 4-tuple                .
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How does it work? (I)

Why does our scheme work? We can write the received 7-
tuple as the sum of the codeword and the error pattern,
that is, r=v+e.
Remember that 1+1=0!
Due to this simple equality we can obtain the sum of the
rows corresponding to the 1's in r by adding component-
wise the sums of the rows corresponding to the 1's in v
and e.
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How does it work? (II)

Now we exploit that the mapping in the table is constructed
such that the sum of the rows corresponding to the 1's in
any codeword is 000.
Hence, we conclude that the sum of the rows
corresponding to the 1's in r (this is the sum that the
decoder computes) is equal to the sum of the rows
corresponding to the 1's in e.
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How does it work? (III)

But assuming at most one error during the transmission we
obtain in case of no errors the sum of zero rows which we
interpret as 000 and then we accept r as our estimate
In case of one error the sum contains one row, namely,
precisely the row which is the binary representation of the
position of the 1 in e.
Hence, flip that position in r and we obtain our estimated
codeword
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The generator matrix

How do we obtain the remarkable encoder mapping?
Since the Hamming code is linear the codewords
corresponding to the information 4 tuples 1000, 0100, 0010,
0001 are of particular interest; these codewords form a so-
called generator matrix for the (7,4) Hamming code:
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Codeword generation

All codewords can be obtained as the product of the
corresponding information 4-tuples and the generator
matrix:

For example, the codeword corresponding to u=(1011) is
obtained as the position-wise modulo-two sum of the first,
third and fourth rows in G, that is,

in agreement with the mapping.
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Generation of the parity check matrix

Assume that we have a K x N generator G, then by the
theory of matrices there exists an (N-K) x N matrix H such
that

It follows immediately that

that is, we have the fundamental result

Where H is the so-called parity check matrix.
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The parity-check matrix

In words, let v be a codeword, then if we add (position-wise
modulo-two) the rows of HT corresponding to the 1s in v we
obtain the allzero (N-K)-tuple.
This computation is a parity-checking procedure and thus
we call the matrix H a parity-check matrix of our code.
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check matrix

It is easily verified that

Using linear algebra we can obtain the generator matrix G
for a given parity-check matrix H and vice versa.
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