UNIVERSITY

Information Transmission
Chapter 5, Source coding

OVE EDFORS

ELECTRICAL AND INFORMATION TECHNOLOGY

Learning outcomes

* After this lecture the student should
- understand the basics of source coding,
- know what a prefix free source code is,
- know how to calculate average codword length,
— understand the limits on source coding,
- understand the concept of universal source coding, and

- be able to perform encoding and decoding according to the
Lempel-Ziv-Welch algorithm

UNIVERSITY 2

What did Shannon promise?

* We can represent a source
sequence X of length n uniquely
by, on the average, n*H(X) bits

UNIVERSITY 3

A schematic communication system

binar
Source Source n y Channel
encoder digits encoder
Noise Digital
channel
binar
Destination - Source | n y Channel
decoder digits decoder

UNIVERSITY 4

Prefix free source code

We say that a sequence of length I is a prefix of a sequence
if the first / symbols of the latter sequence is identical to the
first sequence; in particular, a sequence is a prefix of itself.

Then we require that no codeword is the prefix of another
codeword and call such a code a prefix-free source code.

The sequence 10011 has the prefixes: 1, 10, 100, 1001,
and 10011.

The source code with codewords {00,01,1} is prefix-free,
but {00,10,1} is not, since 1 is prefix of 10.

UNIVERSITY

Example

Consider the source code

u Py(u) x

up 0.30 10
Uy 0.10 111

What is the average codeword length?

& T
NI,
()Q,S‘pw

UNIVERSITY

Path length lemma

In a rooted tree with
probabilities, the average
depth of the leaves is equal to
the sum of the probabilities of
the nodes (including the root).

Example

* What is the average word length and the uncertainty of
the source

u PU(U) xZr

0.30

w; 0.30 00
ug 0.20 11
uy 0.20 010
us 0.05 0110
ug 0.05 0111

& T
NI,
05 s>

UNIVERSITY

Performance validation

We know from Shannon's source coding theorem that we
cannot do better than the uncertainty of the source:

6
H(U) ==Y Py(u;)log Py(u;)
i=1
= —0.301og 0.30 — 0.20 log 0.20 — 0.201og 0.20
— 0.201log 0.20 — 0.0510g 0.05 — 0.051og 0.05
= 2.34

The Huffman code is optimal so we cannot do better than
W=2.40 when coding the source in the previous example.

We are 2.6 % above the ultimate limit H(U)=2.34, which
cannot be reached if we encode the source symbol
separately.

UNIVERSITY 9

Reaching the limit

If we encode consecutive source symbols pairwise, that is,
use the Huffman code for the source

Uity Pu,u, (ulu])
U1Uq 0.0900
UL U 0.0600
Ui1uUs 0.0600
UgUg 0.0025

we will obtain an average codeword length per single
source symbol that is closer to the uncertainty of the
source, H(U)=2.34. LUND

UNIVERSITY
10

A unmiversal source coding algorithm

The LZW algorithm is due to Ziv, Lempel, and Welch and
belongs to the class of so-called universal source-coding
algorithms which means that we do not need to know the
source statistics.

The algorithm is easy to implement and for long sequences
it approaches the uncertainty of the source; it is
asymptotically optimum.

UNIVERSITY
11

Basic procedure

Initialize the dictionary.

2. Find the longest string W in the dictionary that matches the
current input.

3. Emit the dictionary index for W to output and remove W from
the input.

4. Add W followed by the next symbol in the input to the
dictionary.

5. Go to Step 2.

Suppose we want to compress the sentence:
DO NOT_ TROUBLE TROUBLE
UNTIL TROUBLE TROUBLES YOU!

UNIVERSITY
12

Step Entry # binary digits
0 = —
1 D 8
2 0 [log 1] + 8
3 _ [log 2] + 8
4 N [log 3] + 8
5 0T [log 4]
6 T [log 5| + 8
7 T [log 6]
8 TR log 7'
9 R [log 81 + 8
10 o0u log 9
11 U [log 10] + 8
12 B [log 11] + 8
13 L [log 12] + 8
14 E [log 13| + 8
15 _TR [log 14
16 RO [log 15|
17 0UB [log 16|
18 BL [log 17|
19 1E [log 18]

Step Entry # binary digits
20 E_ log 19
21 U log 20
22 UN log 21|
23 NT log 22
24 TI log 23]
25 1 log 24| + 8
26 L_ ‘log 2571
27 _TRO log 26|
28 0UBL log 27
29 LE_ 'log 28]
30 _TROU [log29]
31 UB log 30|
32 BLE 'log 311
33 ES log 32
34 S log 33] + 8
35 _Y 'log 34|
36 Y log 35] + 8
37 0uU! 'log 36
38 ! log 37| + 8

Evaluation

Without compression we need as many as 50*8=400 binary
digits to represent the sentence as a string of 50 ASCI|
symbols. If we sum the number of binary digits needed for
the 38 steps shown in the table we get only 271 binary
digits.

A highly optimized version of the LZW algorithm we have
described is used widely in practice to compress computer
files under both the UNIX and Windows operating system,
and in a CCITT standard for data-compression for modems.

UNIVERSITY
14

LUND

UNIVERSITY

	Slide 1
	Slide 2
	What did Shannon promise?
	A schematic communication system
	Prefix free source code
	Example
	Path length lemma
	Example
	Performance validation
	Reaching the limit
	A universal source coding algorithm
	Basic procedure
	Slide 13
	Evaluation
	Slide 15

