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Learning outcomes

● After these lectures (slides span two lectures), the student should

– understand the basic principles of how digital information is carried on analog signals 
(digital modulation), including amplitude, phase and frequency modulation/keying,

– understand how the modulation pulse shape determines bandwidth of the signal and 
what the narrowest possible transmission bandwidth is for a certain data rate,

– understand how one or more bits are mapped onto signal constellation points,

– be able to perform basic calculations using relations between data rates, signal 
constellations, pulse chapes and transmission spectrum/bandwidths, 

– understand the fundamental principles of how digital information is detected at the 
receiver, including optimal receivers,

– understand the relationships between receives signal quality and resulting bit-error 
rates,

– be able to perform basic calculations on resulting receiver performance (bit-error rates) 
when the modulation type and the received signal quality are given.
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Some basics

• Each bit, or groups of bits, is represented by an analog 
waveform v(t)

• Symbol rate Rt = 1/T

• Symbol energy Es

• The power of the signal is given by Es/T = Es Rt

• Data an,
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Different modulation formats

• Amplitude modulation, ASK

• Phase modulation, PSK

• Frequency modulation, FSK
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4ASK

00 01 11 00 10

- Amplitude carries information
- Phase constant (arbitrary)

4PSK

00 01 11 00 10

- Amplitude constant (arbitrary) 
- Phase carries information

4FSK

00 01 11 00 10

- Amplitude constant 
(arbitrary)
- Phase slope (frequency)
  carries information

Comment:

Amplitude, phase and frequency 
modulation

  A t
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The pulse shape determines the 
bandwidth occupied
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Train of pulses representing 0 0 1 0

• Square pulses

• Raised cosine



8

The modulation process

Complex domain

Mapping PAM
mc  LPs t

 exp 2 cj f t

Re{ }

Radio
signal

PAM:

“Standard” basis pulse criteria

(energy norm.)

(orthogonality)

Complex 
numbers

Bits

Symbol
timesLP(t)= ∑

m=−∞

∞

cm v (t−mT s )

∫
−∞

∞

|v (t )|
2
dt=1 or =T s

∫
−∞

∞

v (t)v*
(t−mT s )dt=0 for m≠0
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Basis pulses and spectrum

Assuming that the complex numbers cm representing the 
data are independent, then the power spectral density of 
the base band PAM signal becomes:

which translates into a radio signal (band pass) with

Many possible pulses

   
2

2
LP








 





 dtetvfS πftj

tt
sT

      cc ffSffSfS  LPLPBP 2

1
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Basis pulses

(Root-) Raised-cosine [in freq.]

Rectangular [in time]
TIME DOMAIN FREQ. DOMAIN

sTf freq. Normalized

Normalized freq. f ×T s

sT t/ timeNormalized

sT t/ timeNormalized
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Interpretation as IQ-modulator

-90o

cf

    ReI LPs t s t

    ImQ LPs t s t

 cos 2 cf t

 sin 2 cf t

Radio
signal

For real valued basis functions v(t) we can view PAM as:

Pulse
shaping
filters

Mapping
mc

 Re mc

 Im mc

(Both the rectangular and the (root-) raised-cosine
pulses are real valued.)
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Binary phase-shift keying (BPSK)
Rectangular pulses

Radio
signal

Base-band
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Binary phase-shift keying (BPSK)
Rectangular pulses

Complex representation Signal constellation diagram
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Binary phase-shift keying (BPSK)
Rectangular pulses

Power spectral
density for BPSK

Normalized freq. f ×T b
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Binary phase-shift keying (BPSK)
Raised-cosine pulses (roll-off 0.5)

Base-band

Radio
signal
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Binary phase-shift keying (BPSK)
Raised-cosine pulses (roll-off 0.5)

Complex representation Signal constellation diagram
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Binary phase-shift keying (BPSK)
Raised-cosine pulses (roll-off 0.5)

Power spectral
density for 
BAM/BPSK

Much higher 
spectral efficiency 
than BPSK (with 

rectangular
pulses).

Normalized freq. f ×T b
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Quaternary PSK (QPSK or 4-PSK)
Rectangular pulses

Complex representation

Radio
signal
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Quaternary PSK (QPSK or 4-PSK)
Rectangular pulses

• Power spectral density for QPSK

Twice the spectrum 
efficiency of BPSK 
(with rect. pulses).

TWO bits/pulse
instead of one.
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A golden bandwidth rule

The narrowest bandwidth of any 
pulses that act independently is

 [-1/2T, 1/2T] 
where T is the symbol interval
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Other common signal constellations

• 16 QAM

– Less bandwidth but 
higher SNR required

• 8 PSK



Detection, receivers
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Detecting pulse waveforms

• Find the method that minimizes the error probability in 
white Gaussian noise

– Correlation detector

• Correlate the received signal with a local copy of the ideal 
pulse alternatives
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Optimal receiver
What do we mean by optimal?

Every receiver is optimal according to some criterion!

We would like to use optimal in the sense that we achieve a
minimal probability of error.

In all calculations, we will assume that the noise is white and
Gaussian – unless otherwise stated.
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Optimal receiver
Transmitted and received signal

t

t

Transmitted signals

1:

0:

s1(t)

s0(t)

t

t

Received (noisy) signals

r(t)

r(t)

n(t)

Channel

s(t) r(t)
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Optimal receiver
A first “intuitive” approach
“Look” at the received signal and compare it to the possible received
noise free signals. Select the one with the best “fit”.

t

r(t)

Assume that the following
signal is received:

t

r(t), s0(t)

0:

Comparing it to the two possible
noise free received signals:

t

r(t), s1(t)

1:
This seems to 
be the best 
“fit”. We 
assume that 
“0” was the 
transmitted bit.
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Optimal receiver
Let’s make it more measurable
To be able to better measure the “fit” we look at the energy of the
residual (difference) between received and the possible noise free signals:

t

r(t), s0(t)

0:

t

r(t), s1(t)

1:
t

s1(t) - r(t)

t

s0(t)-r(t)

This residual energy is much 
smaller. We assume that “0” 
was transmitted.
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Optimal receiver
The AWGN channel
The additive white Gaussian noise (AWGN) channel

- transmitted signal

- channel attenuation

- white Gaussian noise

- received signal

In our digital transmission
system, the transmitted
signal s(t) would be one of,
let’s say M, different alternatives
s0(t), s1(t), ... , sM-1(t). 

 s t



 n t

 r t

 s t



 n t

 r t

   s t n t 
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Optimal receiver
The AWGN channel, cont.
It can be shown that finding the minimal residual energy (as we
did before) is the optimal way of deciding which of s0(t), s1(t), ... , sM-1(t)
was transmitted over the AWGN channel (if they are equally probable). 

For a received r(t), the residual energy ei for each possible transmitted
alternative si(t) is calculated as

Same for all i Same for all i,
if the transmitted
signals are of
equal energy.

The residual energy is minimized by
maximizing this part of the expression.

ei=∫∣r t − si t ∣
2
dt=∫ r t − sit   r t − si t 

*
dt

=∫∣r t ∣
2
dt−2 Re {*∫ r t  si

*
t dt }∣∣

2∫∣sit ∣
2
dt
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Optimal receiver
The AWGN channel, cont.
The central part of the comparison of different signal alternatives
is a correlation, that can be implemented as a correlator:

or a matched filter

where Ts is the symbol time (duration).

The real part of 
the output from
either of these
is sampled at t = Ts

 r t

 *
is t

*

∫T s

 r t
 *

i ss T t

*
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Optimal receiver
Antipodal signals
In antipodal signaling, the alternatives (for “0” and “1”) are

This means that we only need ONE correlation in the receiver
for simplicity:

   
   

0

1

s t t

s t t







 

 r t

 * t
*

If the real part
at T=Ts is
>0 decide “0”
<0 decide “1”

∫T s
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Optimal receiver
Interpretation in signal space
The correlations performed on the previous slides can be seen as
inner products between the received signal and a set of basis functions
for a signal space.

The resulting values are coordinates of the received signal in the
signal space.

 t

“0”“1”

Antipodal signals

 0s t

“0”

“1”

 1s t
Orthogonal signals

Decision
boundaries
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Optimal receiver
The noise contribution

Noise pdf.

Noise-free
positions

sE

sE This normalization of
axes implies that the
noise centered around
each alternative is
complex Gaussian

   2 2N 0, N 0,j 
with variance σ2 = N0/2
in each direction.

Assume a 2-dimensional signal space, here viewed as the complex plane

Re

Im

sj

si

Fundamental question: What is the probability
that we end up on the wrong side of the decision
boundary?
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Optimal receiver
Pair-wise symbol error probability

sE

sE

Re

Im

sj

si

What is the probability of deciding si if sj was transmitted?

jid

We need the distance
between the two symbols.
In this orthogonal case:

2 2
2ji s s sd E E E  

The probability of the noise
pushing us across the boundary
at distance dji / 2 is

Pr  s j si =Q 
d ji/2

N 0/2 =Q 
E s
N 0


=

1
2

erfc 
E s

2 N 0

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Optimal receiver
Bit-error rates (BER)

2PAM 4QAM 8PSK 16QAM

Bits/symbol 1

Symbol energy Eb

BER Q 
2E b
N 0



2

2Eb

Q 
2E b
N 0



3

3Eb

~
2
3
Q 0.87

Eb
N 0



4

4Eb

~
3
2
Q 

E b , max

2.25N 0


EXAMPLES:
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Optimal receiver
Bit-error rates (BER), cont.
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)

2PAM/4QAM
8PSK
16QAM

0/  [dB]bE N
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Quadrature modulation, why is it 
working?

Any  carrier digital modulation can be expressed as

The sine and cosine ”channels” are independent/orthogonal

Therefore we can send two pulses at the same time without 
interference
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SUMMARY

● Bits/symbols are carried on analog signals by altering their 
amplitude/phase/frequency.

● Modulation basics, basis pulses

● Relation between data rate and bandwidth

● IQ modulator

● Basic modulation formats

● Detection of data at receiver - optimal receiver in AWGN channels

● Interpretation of received signal as a point in a signal space

● Euclidean distances between symbols determine the probability of 
symbol error

● Bit error rate (BER) calculations for some signal constellations
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