

Information Transmission Chapter 3, image and video

OVE EDFORS

ELECTRICAL AND INFORMATION TECHNOLOGY

Learning outcomes

Understanding

- raster image formats and what determines quality,
- video formats and what determines quality, and
- the basics of image and video compression.

2

Images

- An image is a two-dimensional array of light values.
- Make it 1D by scanning
- Smallest element of an image is called a pixel.
- Number of pixels per cm/inch gives the resolution of the image.

Resolution

- Resolution of, e.g., a printer is in dots per inch (DPI).
 Each dot is represented by a bit.
 - 300 DPI 12 dots/mm
- When the dots have different levels of grey, the image is said to be of gray scale. Usually, 256 gray levels are used, so that each pixel is represented by 8-bits

Example, 90, 300, 600 DPI

5

Display resolutions

Images

- Representing color images requires specifying the intensities Red, Green and Blue (RGB) colors.
- Digital images require huge memory for storage.
- Sophisticated image compression schemes like JPEG are employed to reduce the size of images.
- These schemes employ the properties of images and the behavior or response of human eye to reduce redundancy.

Doesn't look as nice in close-up.

Image formats

- Vector formats (e.g. SVG, EPS)
 - Specify where lines should be drawn
- Raster format (e.g. TIFF/JPEG/PNG/GIF/BMP)
 - Specify each pixel value (RGB)
 - May use different levels of compression

Picture formats (original+5x magn.)

JPEG encoding

- The representation of the colors is converted from RGB to $Y'C_BC_R$, consisting of one **luma component** (Y') for brightness, and two **chroma components**, (C_B and C_R), for color.
- The resolution of the chroma data is reduced. This reflects the fact that the eye is less sensitive to fine color details than to fine brightness details.
- The image is split into blocks where each of the Y, C_B , and C_R data undergoes the Discrete Cosine Transform, similar to a Fourier transform.

JPEG encoding

- The amplitudes of the frequency components are quantized. Human vision is much more sensitive to small variations in color or brightness over large areas than to the strength of high-frequency brightness variations.
- The magnitudes of the high-frequency components are stored with a lower accuracy than the low-frequency components. If an excessively low quality setting is used, the high-frequency components are discarded altogether.
- The resulting data for all blocks is further compressed with a lossless algorithm.

Fourier (cosine) transform of an image?

- Represent the image by its frequency components
- Linear combination of the squares here

Einstein in the frequency domain

Video

- Video is a continuously changing image or a sequence of still images to give an impression of motion.
- Human eye suffers (or benefits?) from persistence of vision.
- An image persists for about 60ms; if next image comes before this time, it appears to be continuous.
- Also eye averages out the noise in successive images thus boosting the effective SNR.
- These features are used to advantage in TV/video transmission.

Rasters in video

- To generate a TV signal, the TV screen or raster is scanned at a very high rate.
- In the PAL system, a frame rate of 25 frames/second is used to scan the raster. This yields a maximum bandwidth of 6.5 MHz for the TV signal, a bandwidth of 1-2 MHz provides satisfactory picture quality.
- An SNR of 20 dB is sufficient for the video signal.
- Digital video signals have very high bit rates 60 Mbps. Hence video compression algorithms like MPEG are widely employed that bring down to 2-5 Mbps

HDTV

- High Definition TV: Increasing the number of scan lines and increasing the analog bandwidth (50 MHz), thereby increasing the resolution.
- Sophisticated video compression schemes bring down the bit rates to 10-20 Mbps. This allows transmission of HDTV signal in the same frequency channel used by analog TV (6-7 MHz)
- MPEG-2 Video compression standard includes the HDTV apart from standard TV.

Video compression

- The sequence of images contains spatial and temporal redundancy that video compression algorithms attempt to eliminate or code in a smaller size.
- Only small differences between successive images.
 - Use differential encoding: transfer/store differences
- Objects move or change
 - shift, rotate, lighten, or darken

History of video compression standards

Year	Standard	Publisher	Popular Implementations
1984	H.120	ITU-T	
1988	H.261	ITU-T	Videoconferencing, Videotelephony
1993	MPEG-1 Part 2	ISO, IEC	Video-CD
1995	H.262/MPEG-2 Part 2	ISO, IEC, ITU-T	DVD Video, Blu-ray, Digital Video Broadcasting, SVCD
1996	H.263	ITU-T	Videoconferencing, Videotelephony, Video on Mobile Phones (3GP)
1999	MPEG-4 Part 2	ISO, IEC	Video on Internet (DivX, Xvid)
2003	H.264/MPEG-4 AVC	Sony, Panasonic, ISO, Samsung, IEC, ITU-T	Blu-ray, HD DVD Digital Video Broadcasting, iPod Video, Apple TV,
2009	VC-2 (Dirac)	SMPTE	Video on Internet, HDTV broadcast, UHDTV
2013	H.265	ISO, IEC, ITU-T	High Efficiency Video Coding

DVB-T2 (Digital Video Broadcasting –T2)

Digital Modulation	Lines	Frame rate	Data rate	CH. B/W (MHz)
COFDM (4/16/64/ 256 QAM)	1080	up to 50p	Up to 50.34 Mbit/s	1.7, 5, 6, 7, 8, or 10

Video Coding	Audio Coding	Interactive TV	Digital subchannels	Single- Frequency Network
H.264, H.262	MPEG-1 Layer II, HE-AAC	yes	Yes	Yes

SUMMARY

- (Raster) Image:
 - A 2D signal or array of color/light values
 - Smallest element called a pixel
 - Resolution often given in pixels/inch (PPI) or dots/inch (DPI)
 - Three component colors (typically RED, GREEN, BLUE) are required for color images.
- Video:
 - Sequence of images (frames)
 - Frame rate based on human persistence of vision
- Compression methods:
 - Based on properties of images and human visual system
 - Can reduce storage size considerably

LUND UNIVERSITY