

Information Transmission Chapter 3, text and speech

OVE EDFORS

ELECTRICAL AND INFORMATION TECHNOLOGY

Learning outcomes

Understand

- some of the most important concepts regarding information and its representation (bits, bandwidth, SNR),
- how to perform decibel calculations,
- what text is and how it can be coded,
- signal frequency content/components and spectrum,
- voice generation and properties,
- audio quality measures, and
- basics of (digital) audio/music recording.

Some concepts

- Bits
 - Small pieces of information
 - The information in a 2-valued variable
- Bandwidth
 - Fourier transform of a signal
 - (The number of bits/s from a source)
- Signal to noise ratio SNR
 - Average signal power / average noise power

Decibel - dB

- Convenient when comparing values with a really small difference or a really large one
- If A and B are power values $10 \log_{10}(A/B) \text{ dB}$
- Or if A and B are amplitude values

 $10\log_{10}(A/B)^2 = 20\log_{10}(A/B) \,\mathrm{dB}$

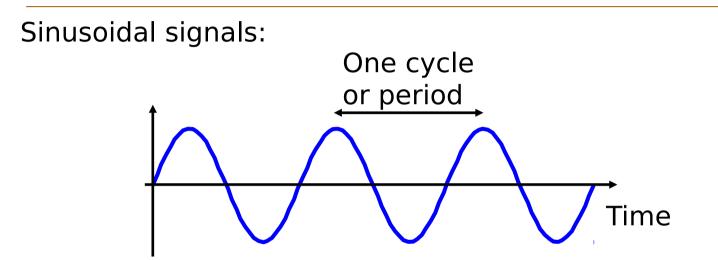
What is text?

Def: A collection of letters (numbers, symbols, ...) to form words (math figures, software, crypto-text, ...)

Symbols come from a set called the *alphabet*

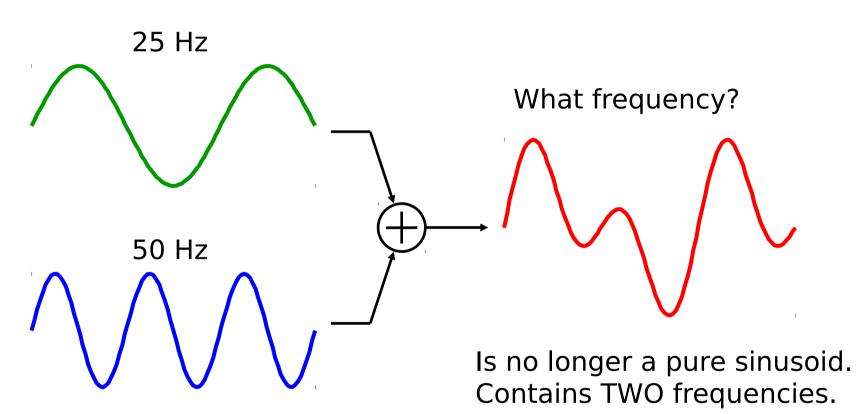
Do we have any standard alphabets?

ASCII american standard for information interchange


Binary to	Hexadecimal		0	1	2	3	4	5	6	7	8	9	A	B	C	D	Ε	F	
0000	0	9 1																	
1000	1			-			-	ō,	•	-	7	-		-	-			,	
0100	2	2	_	Ţ	_	#	Ş	2	8	_	Ĩ	1	¥	+	,	-	•	1	
1100	3	3	٥	1	2	3	4	5	Ó	7	8	9	-	,	<	=	>	?	
0010	4	4	Q	Ĥ	B	C	D	Ε	F	G	H	Ι	J	К	L	М	N	0	
1010	5	5	Р	Q	R	S	Τ	U	U	Ψ	Х	Y	Ζ	Γ	١	1	*		
0110	6	6	٦	à	b	С	d	e	F	q	h	i	i	k	1	ы М	n	0	
1110	7	7	п	a	5.4	s	+		•	_				л У	Ť	1	~		
			P	4	-	3		u -	2	W	X	Ā	Z	1	Ī	2	_		
0001	8	8																	
1001	9	9		6	,														
0101	Ā	Ĥ		i	¢	£	¥	¥	1	§		C	a	~	٦	-	Ø		
1101	B	В	0	±	2	3		μ	Ť	-		1	<u>o</u>	>>	4	¥	¥	;	
0011	Č	C	À	Á	Â	Ã	Ä	Å	Ė	Ç	Ě	É	Ê	Ë	ì	ŕ	Ŷ	Ŕ	
1011	D	D	Ð	Ñ	ò	ó	ö	õ	ö	X	Ø	ù	ŭ	ñ	Î	ý	ь Б	<u> </u>	
0111	E				-	-		_			_	-			U N	Ť 7	Þ	ß	
1111	F	E	à	á	â	ã	ä	å	æ	Ç	è	é	ê	ë	1	1	î	ï	
T T T T	Г	F	ð	ñ	ò	Ó	ô	õ	ö	-	Ø	ù	ú	û	ü	ú	Ь		

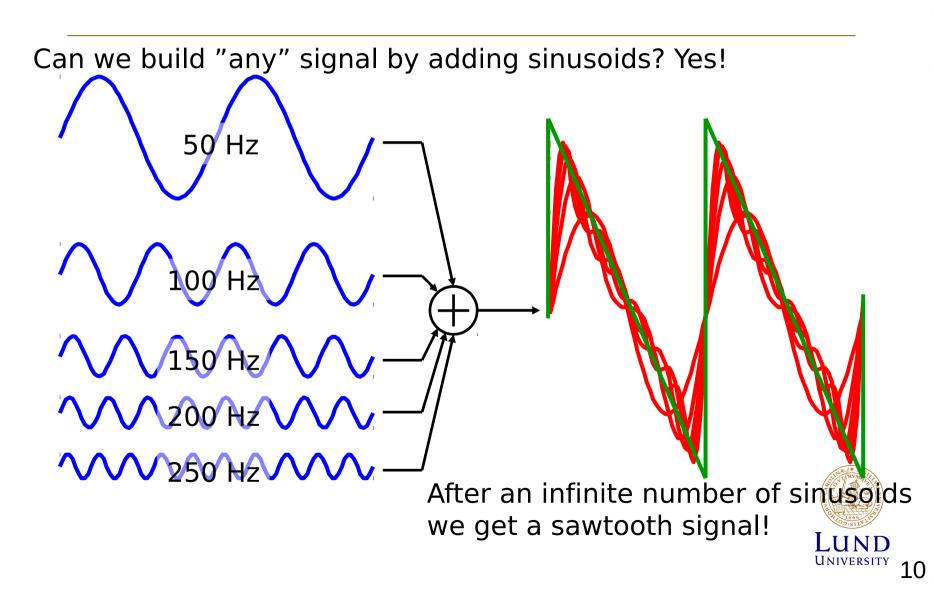
Frequency and bandwidth

Frequency



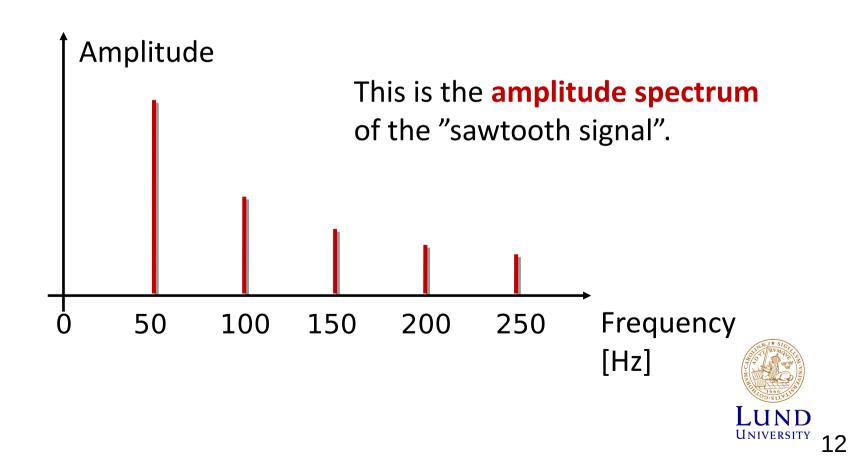
Frequency = Number of cycles per second [Herz]

Example: The AC power in your home has a frequency of 50 Hertz. This also means that the cycle time is 20 ms.

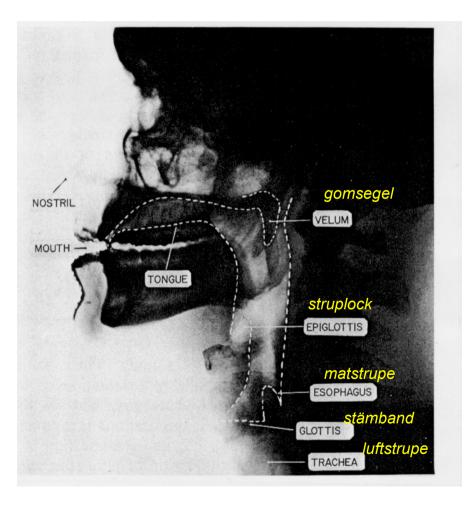


Adding sinusoids [1]

Adding sinusoids [2]

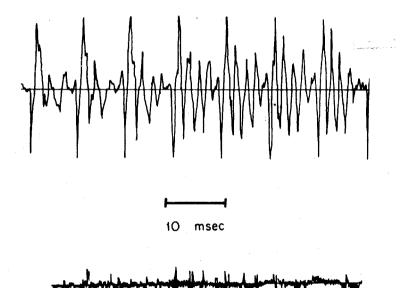


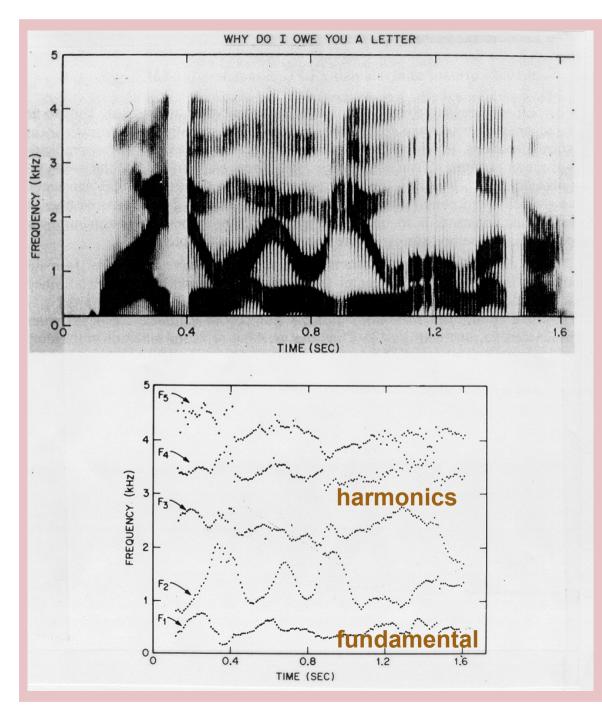
Spectrum



Spectrum [1]

If we can build any signal by adding sinusoids ... can we view the frequency content of a signal in some way?


The vocal tract


- Vocal cord produces the tone, the rest is forming the sound
- Voiced sounds/unvoiced sounds
- 5-10 sounds/s in speech

Voiced/unvoiced sounds

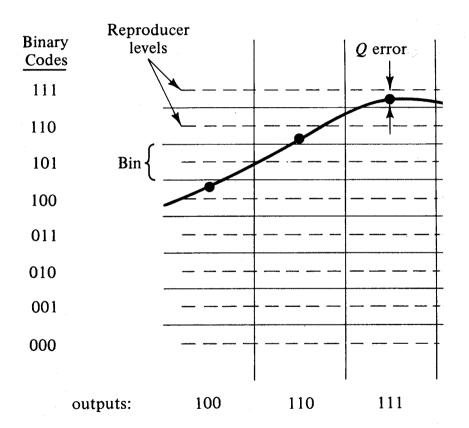
LUND UNIVERSITY

Main energy in 100-800 Hz (speaker recognition)

800 Hz-4 kHz (intelligibility range)

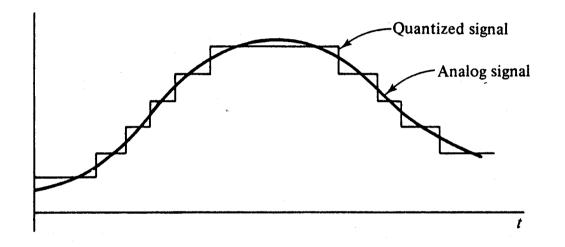
Less than 1% above 4 kHz

Demo: Audio analyzer



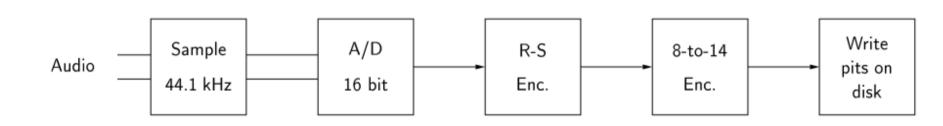
Standard phone line

- 40 dB signal to noise ratio (SNR) desired
- 4 kHz bandwidth
- Uses uncompressed PCM, as opposed to cell phones where there is speech coding


3 bit PCM

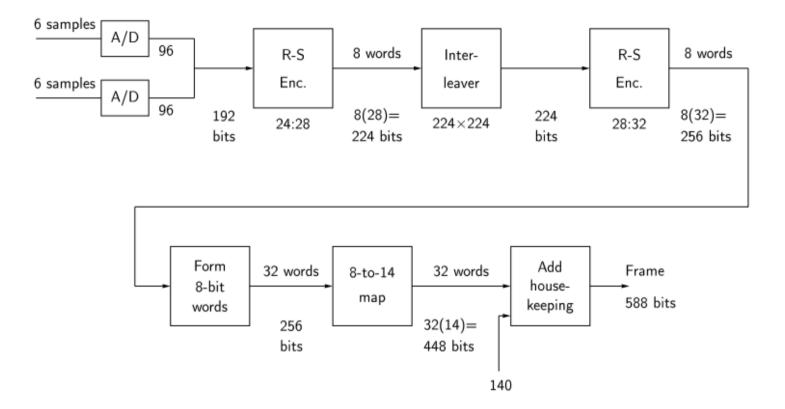
- 2³ regions (bins)
- A deviation means an error – noise
- SNR= $6b-C_0 dB$
- If C₀=7.3,,,, how many bits do you need?

Reconstruction error



Music

- Highly dynamic 30-50 dB power variations
- Funtamental tone+overtones, 20-20 000 Hz
 - Sensitive in the range 100-4000 Hz
 - No direction below 100 Hz


Music recording on a CD

2 channels*44.1 k samples/s*16 bits/sample result in a bit stream of 1.4 Mbit/s

How many bits are there?

SUMMARY

- Signal quality dB measure
 - Power ratio in dB: $10 \log_{10}(A/B)~\mathrm{dB}$
 - Amplitude ratio in dB: $20\log_{10}(A/B)~\mathrm{dB}$
- Text:
 - Sequence letters (symbols from an alphabet) forming words
 - Several coding standards, e.g. ASCII
- Sinusoidal signals
 - Have frequency (period time) and amplitude
 - Can be added to form signals of other shapes
 - Amount of each sinusoidal used (amplitude) called the spektrum
- Voice
 - Voice signals/speech created by vocal cords producing the tone
 - ... and rest of the voice aparatus forming the spectrum
 - Voiced and univoiced sounds
 - Most information contained below 4 kHz
 - 40 dB SNR PCM coding: 8 kHz sampling x 8 bit/sample = 64 kbit/sek
- Music
 - Different instruments playing the same tone differ in their over-tones
 - Frequency span: from 20 Hz to 20 kHz
 - CD quality PCM (stereo): 44.1 kHz sampling x 2 channels x 16 bit/sample = 1.4 Mbit/sek
 - Error correcting codes used to protect against errors when reading from CD

LUND UNIVERSITY