

Chapter 1: History

Learning outcomes

Understand

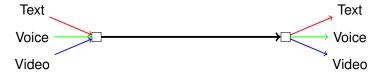
- which important mechanisms and trends lead to telecom innovations,
- why digital information systems often are preferable,
- different types of information characteristics, and
- what is happening (on a high level) in standardization of 5G.


Hallmarks of telecom innovations

- Usually come out of several places
- A full usable system must be proposed
- A system must be financed
- Must provide a new major service ("Killer app")
- Usually based on old science
- Inventors are problem solvers, not scientists
- Social effects fully felt only after 50 years
- Often monopolies, force standardization

Technology trends leading to telecom

- Electrical signaling (wires, radio, fiber)
- Microcircuits
- Software
- Scientific understanding (Maxwell, Nyquist, Shannon, et al.)


Why going digital?

- Inexpensive hardware
 - Moore's law: $Cost = \left(\frac{1}{2}\right)^{\frac{2}{3}years}$
 - VLSI technology (also for analog circuits)
- New services possible
 - E-banking, email, web, travel booking, distributed lifestyle
- Control of quality
 - When there is a chain of steps → Digital better
 - Quality set by number of bits (bit rate)

Why going digital?

- Flexible transport/switching
 - Same format for all
 - Easier, no quality loss

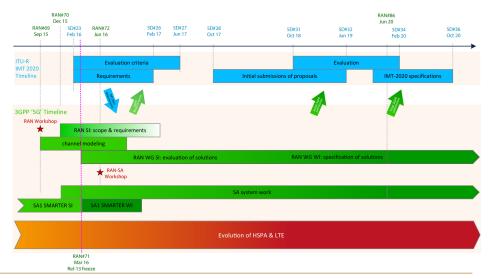
- Interference rejection
 - A lot of interference in wireless communications, e.g., mobile telephony
- Security
 - Much easier in the digital domain

Characteristics of information

- The communication medium
 - Radio (i.e., no medium), electric current, write on paper, smoke
- Delay
 - Letters days
 - Email seconds
 - Live radio milli-seconds
- Quality
 - CD → telephone → military radio
- Measures
 - Nr. of symbols
 - Meaning (of text, of emotions)
 - Shannon: entropy
- Form
 - Symbols (text, programs, ...)
 - Analog waveforms (voice, video)
 - Feelings

Well known examples

	Telegraph	Telephone	Radio	τν	Internet
Inventor/where	Morse, USA, 1844	Bell, Canada/USA, 1876	Marconi, Italy/Eng- land, 1895	Many (extend ra- dio)	Many (DARPA)
Full system	Key, code, wire lines	Telegraph + switch- ing, mic, earphone	Telegraph + spark transm., receiver	CRT, camera, high freq. networks	Rules, packets, PC
How financed?	Line-by-line growth	Switch-by-switch growth	None, set by growth	None, set by growth (govern- ment)	None (use existing phone net)
Killer app	Short business messages	same (but per- sonal)	same (but-ship- to ship)	Broadcasting	Email & web
Science base	None	None at first, 1915: tube, 1985: fiber	None at first, 1920: tube circuit ideas	Radio & Circuits	VLSI
Inventor's idea	Magnetism "at a distance"	Switching: au- tomation	Wireless telegraph	Radio with pictures	Rules (TCP/IP), packets
Social effects	Wider idea of na- tion & business, military tactics,	same + instant & friendly	same + instant & friendly	Poplulation control, entertainment	???
Monopoly?	US: Western Union, PTT	US: AT&T, SE: Televerket PTT	US: AT&T, SE: Televerket PTT	US:private, SE: SR/SVT PTT	Out of control (almost)


Today: 5G standardization – what happens?

International Telecommunication Union (ITU) has defined a timeline for 5G standardization, known as IMT-2020, but they are not the only one driving the work.

- 3GPP: The 3rd Generation Partnership Project, contributes to the ITU standard, but they are not alone
- 5G Infrastructure Public Private Partnership (5GPPP): Industry academia research consortia
- Next Generation Mobile Networks (NGMN) Alliance: includes wireless operators like AT&T, U.S. Cellular and Verizon, aims to include operator voices in the 5G discussion,
- FCC, ARIB, ETSI ... : Telecom Standards Institues

Today: 5G standardization – what happens?

LECTURE SUMMARY

- Many things have to be in place for a new innovation to succeed (full system, financed, etc.)
- Trends towards digital: Electrocal signaling, microcircuits, software, ...
- Why digital? Cost, new functionality, control of quality, flexibility, security, . . .
- Information: Medium, delay, quality, measure, form, ...
- Today: 5G standardization: What is happening?

LUND UNIVERSITY