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Learning outcomes
● After the lectures the student should:

– Understand and be able to use modulo-two arithmetic,
– know that a received word is composed of the transmitted code word 

and an error pattern,
– know what the minimum distance of a code is and how it related to 

error correction and error detection properties,
– be able to perform encoding of messages into code words,
– understand how code words are generated using a generator matrix, 

and
– understand how errors can be detected using a parity check matrix.
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Where are we in the BIG PICTURE?

Block
codes

Lecture relates to pages
189-195 in textbook.
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Methods of channel coding
● For channel coding (error correction) we have two main classes of codes, 

namely:
– block codes, which we first encountered when we discussed 

Shannon's channel coding theorem
– convolutional  codes. 

We shall briefly discuss both classes.
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Digital channel – symbols in and out

Symbols X as
input to channel

Symbols Y as
output from channel

Our code words

Our code words,
corrupted by the
noisy channel
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The binary field
For the following calculations we use the binary field, for 
which the rules of addition and multiplication are those of 
modulo-two arithmetic:

Notice that since 1 + 1 = 0, subtraction is the same as 
addition, which is very convenient
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The error pattern

Suppose that the codeword                            is transmitted 
over the binary symmetric channel and that 
is the possibly erroneously received version of it, then the 
error pattern                           is defined to be the N-tuple 
that satisfies

If we have one error, that is, e consists of one 1 and N - 1 
0's, then one component in v is altered. 

Two errors cause two altered components in v.



Ove Edfors EITA30 - Chapter 5 (Part 4) 8

Minimum distance
The minimum distance, dmin, of a block code B is the 
minimum of all distances between two non-identical 
codewords of the code. 

If the sum of any two codewords is a codeword, then the 
code is said to be linear. For a linear block code the 
minimum distance is simply equal to the least number of 1's 
in a nonzero codeword

In general, a block code with minimum distance dmin will 
correct up (dmin-1)/2 errors. 

Alternatively, it can be used to detect up to dmin-1 errors.
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The (7,4) Hamming code
Hamming constructed a class of 
single-error-correcting linear 
block codes with minimum 
distance dmin = 3. 

In the table we specify an 
encoder mapping for the (7,4) 
Hamming code with M = 24 = 16 
code words.

This code has rate
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Example

Assume that we would like to transmit the information 4-
tuple u = (1011) over a binary symmetric channel. 

Then we encode it, by using the mapping in the table, and 
obtain the code word v = (0110011).

Let, for example, the sixth position be altered by the 
channel. Thus, we receive r = (0110001). 



Ove Edfors EITA30 - Chapter 5 (Part 4) 11

Example (cont.)

To correct the error we add position-wise modulo-two rows 
2, 3, and 7  (the positions corresponding to the 1's in r) from 
a given matrix HT (which we will explain later) and obtain

that is, the binary representation of 6; we flip the sixth 
position in r = (0110001) and obtain the estimate of the 
code word                        which  corresponds to the 
information 4-tuple                  .                
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How does it work? (I)

Why does our scheme work? We can write the received 7-
tuple as the sum of the code word and the error pattern, 
that is, r = v + e.

Remember that 1 + 1 = 0! 

Due to this simple equality we can obtain the sum of the 
rows corresponding to the 1's in r by adding component-
wise the sums of the rows corresponding to the 1's in v 
and e.
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How does it work? (II)

Now we exploit that the mapping in the table is constructed 
such that the sum of the rows corresponding to the 1's in 
any code word is 000.

Hence, we conclude that the sum of the rows 
corresponding to the 1's in r (this is the sum that the 
decoder computes) is equal to the sum of the rows 
corresponding to the 1's in e.
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How does it work? (III)

But assuming at most one error during the transmission we 
obtain in case of no errors the sum of zero rows which we 
interpret as 000 and then we accept r as our estimate 

In case of one error the sum contains one row, namely, 
precisely the row which is the binary representation of the 
position of the 1 in e.

Hence, flip that position in r and we obtain our estimated 
codeword 
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The generator matrix

How do we obtain the remarkable encoder mapping?

Since the Hamming code is linear the code words 
corresponding to the information 4 tuples 1000, 0100, 0010, 
0001 are of particular interest; these code words form a so-
called  generator matrix for the (7,4) Hamming code:
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Code word generation
All code words can be obtained as the product of the 
corresponding information 4-tuples and the generator 
matrix:

For example, the code word corresponding to u = (1011) is 
obtained as the position-wise modulo-two sum of the first, 
third and fourth rows in G, that is, 

in agreement with the mapping.

FROM PREVIOUS SLIDE
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Generation of the parity check matrix

Assume that we have a K x N generator G, then by the 
theory of matrices there exists an (N-K) x N matrix H such 
that

It follows immediately that

that is, we have the fundamental result

Where H is the so-called parity check matrix.
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The parity-check matrix
Parity check in different wording: Let v be a code word, 
then, if we add (position-wise modulo-two) the rows of HT 
corresponding to the 1s in v we obtain the all-zero (N-K)-
tuple. 

This computation is a parity-checking procedure and thus 
we call the matrix H a parity-check matrix of our code.
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Generator and parity check matrices

It is easily verified that

Using linear algebra we can obtain the generator matrix G 
for a given parity-check matrix H and vice versa.
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Summary
● Modulo-two arithmetic is used when performing calculations on binary codes

● A received word r is typically described as the sum r = v + e of a transmitted 
code word v and an error pattern e

● The minimum distance dmin of a block code is the smallest distance between any 
two code words, measured in number of bits being different

● A block code can correct (dmin -1)/2 bit errors and detect dmin – 1 bit errors, per 
code word

● Hamming codes are dmin = 3 (one-error correcting) codes

● With generator matrix G and parity check matrix H, the code word 
corresponding to message u is v = uG, and parity check of a received word r is 
done by calculating rHT which reveals the error pattern through (v + e)HT = eHT.
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