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Learning outcomes
● After this lecture the student should

– understand the principles of channel coding,
– understand how typical sequences can be used to find out how 

”fast” we can send information over a channel,
– have a basic knowledge about how channel capacity is related to 

mutual information and its maximization over the channel input 
distribution

– know how to calculate the channel capacity for the binary symmetric 
channel and the additive white Gaussian noise (AWGN) channel
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Where are we in the BIG PICTURE?

Channel
coding

Lecture relates to pages
166-179 in textbook.

Channel
capacity
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What did Shannon promise?
• As long as the SNR is above

-1.6 dB in an AWGN channel  
we can provide reliable 
communication
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A schematic communication system
OUR FOCUS
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Typical sequences

All typical long sequences have approximately the same 
probability and from the law of large numbers it follows that 
the set of these typical sequences is overwhelmingly 
probable.

The probability that a long source output sequence is 
typical is close to one, and, there are approximately 

typical long sequences.

REP.
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Example from textbook (draw from urn)
● - probability 1/3
○ - probability 2/3

Number of typical sequences should be about:

Sequences with “observed uncertainty” within
15% of h(1/3) (probability between 0.027 and 0.068):

(the ones marked with stars)

Why the large discrepancy?

Only valid for “long” sequences.

… but the 15 sequences are less than 1/2 of all
     sequences and contain about 2/3 of all probability.

REP.
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Properties of typical sequences REP.
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Longer typical sequences

Let us now choose a smaller     namely 

(5% of h(1/3)), and increase the length of the sequences. 

Then we obtain the following table:
Note: In the first example
with length-five sequences
we had a wider tolerance
of 15% of h(1/3), and
captured 2/3 of the probability
in our typical sequences.

With this tighter tolerance
we need sequences of
length 100 to capture 2/3
of the total probability
in the typical sequences.

REP.
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Typical sequences in text

If we have L letters in our alphabet, then we can compose 
Ln different sequences that are n letters long. 

Only approximately              , where H(X) is the uncertainty 
of the language, of these are “meaningful”. 

What is meant by “meaningful” is determined by the 
structure of the language; that is, by its grammar, spelling 
rules etc. 

REP.
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Typical sequences in text

Only a fraction 

which vanishes when n grows provided that 
is ”meaningful” text of length n letters. 

For the English language H(X) is typically 1.5 bits/letter and 
                                      bits/letter.

REP.
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Structure in text

Shannon illustrated how increasing structure between 
letters will give better approximations of the English 
language. 

Assuming an alphabet with 27 symbols – 26 letters and one 
space – he started with an approximation of the first order.

The symbols are chosen independently of each other but 
with the actual probability distribution (12 % E, 2 % W, etc.):

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA 

TH EEI ALHENHTTPA OOBTTVA NAH BRL

REP.



Ove Edfors EITA30 - Chapter 5 (Part 2) 13

Structure in text

Then Shannon continued with the approximation of the 
second order. The symbols are chosen with the actual 
bigram statistics – when a symbol has been chosen, the 
next symbol is chosen according to the actual conditional 
probability distribution:

ON IE ANTSOUTINYS ARE T INCTORE ST BE S 

DEAMY ACHIN D ILONASIVE TUCOOWE AT 

TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE

REP.
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Structure in text

The approximation of the third order is based on the trigram 
statistics – when two successive symbols have been 
chosen, the next symbol is chosen according to the actual 
conditional probability distribution:

IN NO IST LAT WHEY CRATICT FROURE BIRS 

GROCID PONDENOME OF DEMONSTRURES OF THE 

REPTAGIN IS REGOACTIONA OF CRE

REP.
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The principle of source coding

Consider the set of typical long output sequences of n 
symbols from a source with uncertainty H(X) bits per source 
symbol. 

Since there are fewer than                      typical long 
sequences in this set, they can be represented by 
binary digits; that is, by                   binary digits per source 
symbol. 

REP.
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Channel coding
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There are 2K different blocks u of K information bits (here 16).

Block coding basics

… 1001|1110|1010|0011|1010|1111|1110 …

Divide the information-sequence to be transmitted into
blocks u = [ u

1
 u

1
 … u

K
 ] of K bits.

Divided into blocks of 4 bits here

For each unique block of information bits, assign a unique
code word x = [ x

1
 x

2
 … x

N
 ] of length N > K bits. Let's use N = 7.

Note that this is a subset of all possible sequences of length N.

Encode your information sequence by replacing each
information block u with the corresponding code word x.

… 0011001|0010110|0100101|1000011|1011010|1111111|0010110 …

7 bit code words here

This is called
an (N,K) block
code, with code
rate

and in this case
it is a (7,4) code
with rate
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Digital channel – symbols in and out

Symbols X as
input to channel

Symbols Y as
output from channel

Our code words

Our code words,
corrupted by the
noisy channel
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Fans (of a typical input sequence and its typical output sequences)

Consider a channel with input X and output Y. 

Then we have approximately             and             typical 
input and output sequences of length N, respectively. 

Furthermore, for each typical long input sequence we have 
approximately                 typical long output sequences that 
are jointly typical with the given input sequence, we call 
such an input sequence together with its jointly typical 
output sequences a fan. 
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We can have at most

non-overlapping fans 

Input sequences of
length N

Output sequences of
length N
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Maximum rate

Each fan can represent a message. Hence, the number of 
distinguishable messages,                           can be at most, 

              , that is

Equivalently, the largest value of the rate R for non-
overlapping fans is 
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Channel capacity

Since we would like to communicate with as high code rate 
R as possible we choose the input symbols according to 
the probability distribution           that maximizes the mutual 
information I(X;Y). This maximum value is defined as the 
capacity of the channel, 
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Channel capacity

Let the encoder map the messages to the typical long input 
sequences that represent non-overlappling fans, which 
requires that the code rate R is at most equal to the 
capacity of the channel, that is,

Then the received typical long output sequence is used to 
identify the corresponding fan and, hence, the 
corresponding typical long input sequence, or, equivalently, 
the message, and this can be done correctly with a 
probability arbitrarily close to 1.
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Channel coding theorem

Suppose we transmit information symbols at rate R=K/N 
bits per channel using a block code via a channel with 
capacity C. 

Provided that R<C we can achieve arbitrary reliability, that 
is, we can transmit the symbols virtually error-free, by  
choosing N large enough. Conversely, if R>C, then 
significant distortion must occur and reliable communication 
is not possible.



Ove Edfors EITA30 - Chapter 5 (Part 2) 25

Binary symmetric channel (BSC)
Binary erasure channel (BEC)
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Channel capacity of the BSC

Since the channel is
symmetric (behaves
the same for 0 and 1)
we can assume that
the maximizing
input distribution is
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Channel capacity for the BSC
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The additive white Gaussian noise (AWGN) 
channel

So far we have considered only channels with binary 
inputs. Now we shall introduce the time-discrete Gaussian 
channel whose output Yi at time i is the sum of the input Xi 
and the noise Zi 

where Xi and Yi are real numbers and Zi is a Gaussian 
random variable with mean 0 and variance         . 
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Capacity of the AWGN
A natural limitation on the inputs is an average energy 
constraint; assuming a codeword of N symbols being 
transmitted, we require that

where E is the signaling energy per symbol.

It can be shown that the capacity of a Gaussian channel 
with energy constraint E and noise variance          is
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Capacity of band limited AWGN channel

The channel capacity of the bandwidth limited Gaussian 
channel with two-sided noise spectral density

where W denotes the bandwidth in Hz and Ps is the 
signaling power in Watts.
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Shannon's channel coding theorem

In any system that provides reliable communication 
over a  Gaussian channel the signal-to-noise ratio 
Eb/N0 must exceed the  Shannon limit, -1.6 dB!

So long as Eb/N0 > -1.6 dB, Shannon's channel coding 
theorem guarantees the existence of a system – 
although it might be very complex – for reliable 
communication over the channel.
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Summary
● Digital channels are characterized by the transition probabilities (X  → Y)

● Typical sequences can help us find out how fast we can communicate on a 
channel

● Channel capacity is defined as the maximal mutual information between input 
(X) and output (Y) and it shows how fast we can communicate reliably over the 
channel

● Capacity of the binary symmetric channel (BSC) is 

● Capacity of the additive white Gaussian noise (AWGN) channel is
– (time-discrete)

– (continuous band limited)

[bit/channel use]

[bit/channel use]

[bit/sec]
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