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Learning outcomes
● After this lecture, the student should

– understand the mathematical concepts of
● uncertainty, aka entropy,
● conditional uncertainty, aka conditional entropy, and

– how they are calculated and some of the basic bounds.
– understand what mutual information is and how it is calculated,
– have a basic understanding of typical sequences and their connection 

to the uncertainty (entropy) of entire sequences, e.g. text, and what 
implications this has on source coding.
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Where are we in the BIG PICTURE?

Properties of
information.

Lecture relates to pages
150-166 in textbook.
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What did Shannon contribute with?
• Founded information theory in 

1948 ”A mathematical theory of 
communication”

• ”one of the most important master’s 
theses ever written”: A symbolic 
analysis of relay and switching 
circuits

• Put crypthology into a 
mathematical framework 1949 
”Communication theory of 
secrecy systems”
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Entropy, ”uncertainty”

Shannon defined the uncertainty or entropy of a discrete 
random variable X to be the quantity 

The unit of the uncertainty is called bit.

One bit is the uncertainty of a binary random variable that is 
0 and 1 with equal probability. 

The logarithm is
base 2 when we
measure entropy
in bit.
Sometimes we
make this explicit
by writing log

2
.
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Uncertainty, upper and lower bound

The uncertainty H(X) of the discrete random variable X with 
L outcomes is lower and upper bounded by

with equality on the left if and only if                   for some x, 
and with equality on the right if and only if  
for all x.
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The binary entropy function

Let X be a binary random variable with outcomes, x1 and x2. 
When we have                     and                           , we define 
the corresponding uncertainty

and call h(p) the binary entropy function.
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The binary entropy function
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Conditional uncertainty

The conditional uncertainty (or conditional entropy) of the 
discrete random variable X with L outcomes given the 
discrete random variable Y with M outcomes is the quantity

                is the joint probability distribution and
                   is the conditional probability distribution.



Ove Edfors EITA30 - Chapter 5 (Part 1) 10

Conditional uncertainty

For any two discrete random variables X and Y,

with equality if and only if X and Y are independent random

variables.

What is then the uncertainty of X if we know Y?
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Bounds for the conditional uncertainty

The conditional uncertainty                 of X with L outcomes 
given Y with M outcomes is lower and upper bounded by

When does equality hold?
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Entropy of joint distributions

Since a pair of random variables is also a random variable 
it follows that 

and 
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The chain rule for uncertainty

The uncertainty of the first variable

+ the uncertainty of the second given that we know the first

+ the uncertainty of the third given that we know the first two 

+ …
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Mutual information

The information random variable Y gives

about random variable X is given by 

We conclude that the reduction in the uncertainty of one 
random variable due to the observation of another random 
variable is symmetric in the two random variables
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Typical sequences
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Typical sequences

All typical long sequences have approximately the same 
probability and from the law of large numbers it follows that 
the set of these typical sequences is overwhelmingly 
probable.

The probability that a long source output sequence is 
typical is close to one, and, there are approximately 

typical long sequences.
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Example from textbook (draw from urn)
● - probability 1/3
○ - probability 2/3

Number of typical sequences should be about:

Sequences with “observed uncertainty” within
15% of h(1/3) (probability between 0.027 and 0.068):

(the ones marked with stars)

Why the large discrepancy?

Only valid for “long” sequences.

… but the 15 sequences are less than 1/2 of all
     sequences and contain about 2/3 of all probability.
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Properties of typical sequences
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Longer typical sequences

Let us now choose a smaller     namely 

(5% of h(1/3)), and increase the length of the sequences. 

Then we obtain the following table:
Note: In the first example
with length-five sequences
we had a wider tolerance
of 15% of h(1/3), and
captured 2/3 of the probability
in our typical sequences.

With this tighter tolerance
we need sequences of
length 100 to capture 2/3
of the total probability
in the typical sequences.
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Typical sequences in text

If we have L letters in our alphabet, then we can compose 
Ln different sequences that are n letters long. 

Only approximately              , where H(X) is the uncertainty 
of the language, of these are “meaningful”. 

What is meant by “meaningful” is determined by the 
structure of the language; that is, by its grammar, spelling 
rules etc. 
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Typical sequences in text

Only a fraction 

which vanishes when n grows provided that 
is ”meaningful” text of length n letters. 

For the English language H(X) is typically 1.5 bits/letter and 
                                      bits/letter.
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Structure in text

Shannon illustrated how increasing structure between 
letters will give better approximations of the English 
language. 

Assuming an alphabet with 27 symbols – 26 letters and one 
space – he started with an approximation of the first order.

The symbols are chosen independently of each other but 
with the actual probability distribution (12 % E, 2 % W, etc.):

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA 

TH EEI ALHENHTTPA OOBTTVA NAH BRL
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Structure in text

Then Shannon continued with the approximation of the 
second order. The symbols are chosen with the actual 
bigram statistics – when a symbol has been chosen, the 
next symbol is chosen according to the actual conditional 
probability distribution:

ON IE ANTSOUTINYS ARE T INCTORE ST BE S 

DEAMY ACHIN D ILONASIVE TUCOOWE AT 

TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE
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Structure in text

The approximation of the third order is based on the trigram 
statistics – when two successive symbols have been 
chosen, the next symbol is chosen according to the actual 
conditional probability distribution:

IN NO IST LAT WHEY CRATICT FROURE BIRS 

GROCID PONDENOME OF DEMONSTRURES OF THE 

REPTAGIN IS REGOACTIONA OF CRE
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The principle of source coding

Consider the set of typical long output sequences of n 
symbols from a source with uncertainty H(X) bits per source 
symbol. 

Since there are fewer than                      typical long 
sequences in this set, they can be represented by 
binary digits; that is, by                   binary digits per source 
symbol. 
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Summary
● Uncertainty, aka entropy, and the conditional versions of them are 

calculated from the probabilities of different outcomes of a random 
variables.

● The binary entropy function is a specal case describing the uncertainty of a 
binary.

● The chain rule is a tool for calculating the entropy of joint distributions.

● Mutual information describes how much the uncertainty (entropy) of a 
random variable is reduced when some other random variable is observed.

● Typical sequences can be used to estimate, e.g., how efficiently we can 
source code text or some other sequence of symbols.
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