Information Transmission Chapter 4, Analog modulation

OVE EDFORS Electrical and information technology

Learning outcomes

- After this lecture the student should:
 - Know the basic principles of analog modulation techniques
 - Understand how amplitude modulation is performed and which basic variants there are
 - Understand how frequency modulation is done and how an increased bandwith leads to gains in quality (SNR)
 - Understand why FM radio broadcasting is transmitted the way it is

Where are we in the BIG PICTURE?

Lecture relates to pages 117–127 in textbook.

Analog modulation/ transmission techniques

Analog modulation – basic principles

• Shift the frequency to an appropriate frequency for transmission

 $s(t) = A(t)\cos[\omega_0 t + \phi(t)], \qquad \omega_0 = 2\pi f_0$

- Vary the amplitude or phase to represent the information
 - Phase slope (time derivative of phase) = frequency shift
- The original signal A(t) is often called the **baseband** signal

Modulation property

• Shifting the frequency does not modify the information content

$$g(t)\cos 2\pi f_0t \leftrightarrow (1/2)[G(f+f_0)+G(f-f_0)]$$

• There are two replicas, one at positive frequencies and one at negative

Example, a modulated bandpass signal

• A 5 kHz bandpass signal modulated with a 50 kHz carrier

Ove Edfors

EITA30 - Chapter 4 (Part 2)

AMPLITUDE MODULATION

General amplitude modulation

• The simplest form of AM is where the information can be found in the envelope of the bandpass signal

• $m_{\rm AM}$ is the so-called modulation index

Carrier supression

• The carrier signal contains no information and can be supressed

EITA30 - Chapter 4 (Part 2)

Different amplitude moldulation tech.

upper sideband

lower sideband

AM

lower

sideband

Carrier component

upper sideband

AMPLITUDE MODULATION (WITH CARRIER)

DOUBLE SIDE-BAND MODULATION

UPPER SIDE-BAND MODULATION

FREQUENCY MODULATION

11

Frequency modulation introduction

• Shift the frequency to an appropriate frequency for transmission

 $s(t) = A(t)\cos[\omega_0 t + \phi(t)], \qquad \omega_0 = 2\pi f_0$

- Phase slope (derivative) = frequency shift
- Let the baseband signal change the frequency of the bandpass signal
 - High amplitude (baseband signal) high frequency
 - Low amplitude (baseband signal) low frequency

FM signal with sinusoidal baseband sig.

 $s(t) = A(t)\cos[\omega_0 t + \phi(t)], \qquad \omega_0 = 2\pi f_0$

Frequency modulation

• Let the signal be

$$s(t) = A\cos[2\pi f_0 t + m_{FM} \int_{t_o}^t g(\tau) \, d\tau]$$

- Where $m_{\rm FM}$ is scaling constant and the instantaneous frequency is given by $f_{\rm 0} + m_{\rm FM}$ $g(t)/2\pi$
- The larger modulation index and baseband amplitude the larger is the frequency deviation $\Delta f = m_{FM} g(t)/2\pi$
- Modulation index: $\beta = \Delta f/f_m$

Derived for information signal: $g(t) = \cos(2\pi f_m t)$

Spectrum of FM (sinusoidal baseband)

Larger modulation index β , larger bandwidth

EITA30 - Chapter 4 (Part 2)

Spectrum of FM (sinusoidal baseband)

• Approximate bandwidth by Carson's rule

$$W_{RF} \approx 2(\Delta f + f_m)$$
 (Deviation Form)
= $2f_m(1+\beta)$ (Index Form)

Bandwidth expansion → Gain in SNR

• The SNR after demodulation is determined by the modulation index

$$(S/N)_{\rm out} \approx \frac{3\beta^2}{2} \ (S/N)_{\rm in}$$

• We can trade bandwidth with SNR

FM stereo broadcasting signal

Mono receivers listen to this part only Stereo receivers listen to this part too

But, how do you get proper stereo, with correct left and right?

18

- Analog modulation does not use any "digital" part of the transmitter/receiver chains
- Modulation is typically done by influencing amplitude or frequency of a carrier signal
- Amplitude modulation comes in several forms, with and without carrier component, and the radio bandwidth is "the same" as the baseband signal bandwidth
- Frequency modulation expands the bandwidth, compared to the baseband signal, and the larger the expansion the better the quality (trading bandwidth and SNR)
- Stereo FM broadcasting transmit the sum and difference signals (of left/right), to allow for simple mono receivers.

LUND UNIVERSITY