Chapter 4

Problem 4.1

With the given formula $N = kT_K B_M$ and given values on temperature and bandwidth we get (Boltzmann's constant is $k = 1.38 \times 10^{-23} \text{ W/Hz/K}$)

 $N = \boxed{4 \times 10^{-15} \text{ W} = -144 \text{ dBW} = -114 \text{ dBm}}$

as the observed noise power over the resistor.

Problem 4.4

Relations between polar and quadratic forms of baseband signals are

$$I(t) = A(t) \cos \phi(t)$$
$$Q(t) = A(t) \sin \phi(t)$$

and

$$A(t) = \sqrt{I^2(t) + Q^2(t)}$$
$$\phi(t) = \arctan\left(\frac{Q(t)}{I(t)}\right)$$

Hint: Use the trigonometric identity $A\cos(\alpha + \beta) = A\cos\alpha\cos\beta - A\sin\alpha\sin\beta$.

Problem 4.5

Standard AM carrying the information signal g(t) on the radio signal as $s(t) = A[1+g(t)] \cos 2\pi f_0 t$.

(a) With a single sinusoid $g(t) = \frac{1}{2}\cos 2\pi 500t$ the power in the side-bands is 8 times lower than the carrier signal power, giving

$$\text{Efficiency} = \frac{\text{Power in sidebands}}{\text{Total power}} = \boxed{\frac{1}{9}}$$

(b) With two sinusoids in $g(t) = \frac{1}{2}\cos 2\pi 500t + \frac{1}{2}\cos 2\pi 700t$ and the same amplitude on each as in (a), the power in the side-bands is now doubled compared to (a) and 4 times lower than the carrier signal power, giving

$$\text{Efficiency} = \frac{\text{Power in sidebands}}{\text{Total power}} = \left| \frac{1}{5} \right|$$

Problem 4.7

Let's start with the DSB signal, where v(t) is chosen arbitrarily:

(a) When down-converting with a frequency f'_0 , close to f_0 , we get

The two copies of the signal at the center "almost" lign up to form a scaled version of the signal we started with, v(t).

(b) To complete the detector, we need to do two things: i) make sure that f'_0 equals f_0 and ii) remove (filter away) the high-frequency components of the signal:

To completely reconstruct v(t) we would also need to adjust it's amplitude, so that it becomes equal to what we started with, i.e., we would need to amplify by 2/A. This is, however, not typical since a radio transmission has an additional unknown propagation loss which we also need to compensate for. This has not been accounted for in this problem.

(c) With single-sideband AM, i.e. AM-SSB, only one of the sidebands are transmitted (either the part above or below the carrier frequency). If the part above is used, the transmitted signal looks like:

Like with AM-DSB we multiply by $\cos 2\pi f_0 t$ to detect the signal:

Spectrum of detected AM-SSB (multiply signal by $\cos 2\pi f_0 t$)

The baseband signal v(t) is then reconstructed around f = 0 and there are two copies above/below $\pm 2f_0$ that we need to filter away. (Again, the amplitude is not correct, and needs to be "corrected" if we want to make a perfect reconstruction of v(t).)

Problem 4.8

We have an input SNR of $(S/N)_{in} = 30 \text{ dB} = 10^3 \text{ times}$ and a required output SNR of $(S/N)_{out} = 60 \text{ dB} = 10^6 \text{ times}$ after our FM detector.

(a) We need to achieve a thousand-fold (30 dB) gain in the FM detection, from 30 dB to 60 dB. Using expression (4.25) in the book we see that we need

$$\frac{\Delta f}{f_m} \approx \boxed{26}$$

(b) The bandwidth of our FM signal is given by Carson's rule, which gives

$$W_{\rm RF} \approx 54$$
 kHz.

Hint: Use the result from (a).