
Chapter 2

Problem 2.2
Given impulse response

h(t) = e−|t|

and input signal

x(t) =

�
1, 0 ≤ t ≤ 1
0, otherwise

(a) The output signal y(t) is given by the convolution between h(t) and x(t),
i.e.,

y(t) = h(t) ∗ x(t) =
� ∞

−∞
h(τ)x(t− τ)dτ (1)

= x(t) ∗ y(t) =
� ∞

−∞
x(τ)h(t− τ)dτ (2)

We can use both (1) and (2) for our calculation. Using either these two,
the integration can be divided into three different cases.

After performing these three integrals, we can collect them into a single
expression gives the output

y(t) =





et(1− e−1), for t < 0
2− et−1 − e−t, for 0 ≤ t < 1
−e−t(1− e1), for t ≥ 1

A plot of y(t) looks like this:

(b) For a system to be causal, the output signal has to be zero as long as the
input signal is zero. In this example, the output y(t) is non-zero for all
times t, despite the input x(t) being zero for t < 0. Hence, the system
cannot be causal.

Another way of seeing this is that the impulse response h(t) is non-zero for
t < 0. Any non-zero values on the impulse response at negative times will
result in an output before the input “arrives”, i.e., the system is non-causal.
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(c) The frequency function H(f) of an LTI system is given by the Fourier
transform of its impulse response h(t), i.e.,

H(f) = F{h(t)} =

� ∞

−∞
h(t)e−jωtdt

����
ω=2πf

.

Given this, there are basically two ways to approach this problem: i)
calculate the Fourier transform of h(t) using the transform integral above,
or ii) try to use the table of Fourier transform pairs, where we identify
h(t) with one of the given pairs. Like in most cases, the second way is the
fastest.
Using either of them, we should end up at

H(f) =
2

1 + ω2

(d) With a complex sinusoidal input x(t) = ejω0t, whose angular frequency is
ω = ω0, the corresponding output of the system is “the same complex si-
nusoidal multiplied by the system’s frequency function at that frequency”,
i.e., (for ω0 = 2πf0)

y(t) = H(f0)e
jω0t =

2

1 + ω2
0

ejω0t

Problem 2.3
Given impulse response

h(t) = e−tu(t). (3)

(a) The frequency function is given by the Fourier transform of h(t) and,
again, there are basically two ways to approach this problem: i) calculate
the Fourier transform of h(t) using the transform integral, or ii) try to use
the table of Fourier transform pairs, where we identify h(t) with one of
the given pairs. Again, the second way is the fastest.
Either way, we should end up at

H(f) =
1

1 + jω
.

(b) With a complex sinusoidal input

x(t) = ejω0t

the corresponding output becomes (for w0 = 2πf0)

y(t) = H(f0)e
jω0t =

1

1 + jω0
ejω0t

or, if we take the simplification one step further – which will help us in (c)

y(t) =
1�

1 + ω2
0

ej(ω0t−arctan(ω0)).
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An important observation here is that the magnitude of the frequency
function |H(ω0)| = 1/

�
1 + ω2

0 amplifies the amplitude of the input signal
(one in this case) and the argument ∠H(ω0) = − arctan(ω0) results in a
phase shift of the input signal. This is a general result that applies to all
LIT systems with (complex) sinusoidal input.

(c) With a real input
x(t) = cos(ω0t)

we have the same amplitude and phase change as in the complex sinusoidal
input in (b). Therefore, with input x(t) = cosω0t we get output

y(t) =
1�

1 + ω2
0

cos(ω0t− arctanω0).

Problem 2.5
Given the circuit

(a) To calculate the frequency function of our circuit, we replace signals and
components with their frequency dependent equivalents, i.e., X(f), Y (f),
jωL and 1/(jωC), where ω = 2πf , as usual. After that we do voltage
division to calculate Y (f) as a function of X(f). Rearranging this expres-
sion to H(f) = Y (f)/X(f) and performing some simplification gives the
frequency function

H(f) =
1

(1 + jω)2
(4)

Note: The values used on L and C (and R) in the problem are not terribly
realistic in most practical situations when dealing with electronics. A 1 H
inductor is very large compared to typical inductors with values in the
nH–mH range. The same goes for the 1 F capacitor. Typical capacitors
used in electronics are in the range pF–mF. Resistors are also rarely in
the Ω range, but rather in the range kΩ–MΩ.

(b) Using ω0 = 1 rad/sec we calculate the frequency function H(f0) for this
value, f = 2πω0. The amplitude and angle of the complex number H(f0)
tells us how the filter scales the amplitude and delays the phase of an input
signal with frequency f0. The amplitude is scaled by 1/2 and the phase
delayed is −π/2, which results in (where we have used that cos(t−π/2) =
sin(t))

y(t) =
1

2
sin t.

(c) Since the input x(t) = u(t) is not a simple sinusoid, we need to change
our strategy here. There are several different ways of doing this. One is to
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first find the impulse response, using the (inverse) Fourier transform ... of
H(f) from (a). The table of Fourier transform pairs can be used together
with a simple convolution (if we see H(f) as the transform of “something”
convolved with itself). This gives, after some calculation,

h(t) = te−tu(t)

which we can use to calculate the ourput, using a convolution. We get

y(t) = (1− (t+ 1) e−t)u(t).

Another way to arrive at this solution is to find the impulse response by,
e.g., identifying that

H(f) =
1

(1 + jω)2
= − 1

2πf

d

df

�
1

1 + jω

�

and use transform pair (l), in combination with transform Property 7, in
Table 2.3, which relates to differentiation in the frequency domain.

Problem 2.13
Given the circuit

(a) To find the impulse response we first introduce the frequency dependent
equivalents of the components and use the fact that the input signal X(f)
is split across two impedances, which gives a frequency function

H(f) = (jω)2
1

(1 + jω)2
.

Identifying the first factor (jω)2 as a double time-differentiation of the
corresponding time function. From Problem 2.5 (c) we know that te−tu(t)
is the time function corresponding to 1/(1 + jω)2, and we get

h(t) =
d2

dt2
�
te−tu(t)

�

which we can differentiate using the chain rule and finally obtain

h(t) = δ(t) + e−t(t− 2)u(t)

Problem 2.16
Given the LTI system impulse response

h(t) =

�
1, 0 ≤ t ≤ 1
0, otherwise
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and input signal

x(t) =

�
t, 0 ≤ t ≤ 1
0, otherwise

the output can be calculated using the convolution integral, using four different
cases. Combining all four cases into a single output function we get

y(t) =





0, t < 0
1
2 t

2, 0 ≤ t < 1
1
2 (2− t)t, 1 ≤ t < 2
0, t ≥ 2

Problem 2.17
With the basis signal

ψ(t) = rect(t/T )

(a) The Fourier bandwidth determines how much bandwidth ψ(t) takes up in
the frequency domain (as described by its Fourier transform). Since ψ(t)
is time-limited, Ψ(f) will extend to infinity. Since infinite bandwidth is
not meaningful, we define the bandwidth as the largest frequency of the
main lobe of Ψ(f), that is

W =
1

T
.

(b) The Nyquist shift is given by the smallest time TN which makes φ(t)
orthogonal to all time-shifted copies φ(t − kTN ), for non-zero integers k.
For the given ψ(t) we get

TN = T.

(c) The Shannon bandwidth describes how much bandwidth is “needed” (in
terms of number of orthogonal dimensions per second) and for the given
φ(t) it is

BShannon =
1

2T
.

Problem 2.18
With the basis signal

ψ(t) =

�
1− 2

T |t|, |t| < T/2
0, otherwise

solve the same sub-problems as in Problem 2.17.

(a) The Fourier bandwidth becomes (again, largest frequency of main lobe of
Ψ(f))

W =
2

T
.

(b) The Nyquist shift for the given ψ(t) is

TN = T.
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(c) The Shannon bandwidth for the given φ(t) is

BShannon =
1

2T
.
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