
2019-02-11

1

 Passive Attacker – Can only listen to traffic

 Active Attacker – Can modify, delete and insert messages

Services Needed

 Data integrity – The contents of a packet can otherwise be accidentally or deliberately modified.

 Data confidentiality – Sensitive data can otherwise be read by an eavesdropper

 Data origin authentication – The origin of an IP packet can otherwise be forged (identity spoofing)

Examples of attacks

 Man-in-the-middle attack – Intercept and forward modified traffic (often using independent
connections)

 Replay attacks – Unauthorized data can be retransmitted.

 Spoofing attacks – Disguise as legitimate sender

 Traffic analysis – Communication patterns can be found. Who is talking to who and how often?

EITA25 - Computer Security 1

Network Attacks and Threats

2019-02-11

2

EITA25 - Computer Security 2

Original

Message

Data 3Header 3

Data 2Header 2

Transport Layer

(TCP, UDP)

Network Layer

(IP)

Data 1Header 1

Application Layer

(telnet, SSH, FTP)

Data Link

Layer

 TCP/IP model has four layers

 Each layer adds new header

 Headers are peeled off one by

one at destination

2019-02-11

3

 Application layer (e.g., PGP, Kerberos, SSH, etc.)

◦ Security can meet the exact demands of the application

◦ Has to be designed for each application

 Transport layer (e.g., SSL/TLS)

◦ Application developer can choose if it is to be used

or not

◦ Existing applications have to be modified

 Internet layer (e.g., IPsec)

◦ Seamless security for applications

◦ More difficult to exercise on a per user basis in

multiuser system, or per application basis

 Data link layer (e.g., hardware encryption)

◦ Very fast

◦ Need dedicated links

EITA25 - Computer Security 3

Transport

Application

IP/Internet

Data Link

2019-02-11

4

 IPsec provides security at network (Internet) layer.
◦ All IP datagrams covered.

◦ No re-engineering of applications.

◦ Transparent to users.

 Mandatory for IPv6
◦ Extension headers defined

in the protocol

 Optional for IPv4

 Two major security mechanisms:
◦ Authentication Header (AH).

◦ Encapsulating Security Payload (ESP).

 Two options
◦ Transport mode

◦ Tunnel mode

EITA25 - Computer Security 4

Application Layer

Transport Layer

IP/Internet Layer

Data Link Layer

2019-02-11

5

 An SA is identified by a Security Parameters Index (SPI) and includes e.g.

◦ Sequence number counter

◦ Algorithms, keys and additional parameters for AH or ESP

◦ Protocol mode (tunnel or transport)

 Different for each combination of

 Possible to combine SAs

◦ Transport Adjacency – Several SAs used on same IP datagram in transport mode

◦ Iterated Tunneling – Several nested tunnels

EITA25 - Computer Security 5

{ESP, AH} X {Tunnel, Transport} X {Sender, Receiver}

2019-02-11

6

 Protection for upper-layer protocols.

 Protection covers IP datagram payload (and selected header fields).

◦ Could be TCP packet, UDP, ICMP message,….

 Host-to-host (end-to-end) security:

◦ IPsec processing performed at endpoints of secure channel.

◦ So endpoint hosts must be IPsec-aware.

EITA25 - Computer Security 6

End-to-end security

2019-02-11

7

 Protection for entire IP datagram.
◦ Entire datagram plus security fields treated as new payload of ‘outer’ IP datagram.

◦ Original IP datagram encapsulated within an outer IP datagram.

 IPsec processing performed at security gateways on behalf of endpoint hosts.
◦ Gateway could be perimeter firewall or router.

◦ Gateway-to-gateway rather than end-to-end security.

◦ Hosts need not be IPsec-aware.

 Intermediate routers have no visibility of inner IP datagram when encrypted.
◦ Even original source and destination addresses encapsulated and hence ‘hidden’.

EITA25 - Computer Security 7

2019-02-11

8

Public network

(Internet)

EITA25 - Computer Security 8

IPsec implemented in gateways or firewalls

Corporate VPN

2019-02-11

9

 AH = Authentication Header (RFC 4302).

 Provides data origin authentication and data integrity using a MAC.

 AH authenticates whole payload and most of header.

 Prevents IP address spoofing since source IP is authenticated.

 Prevents replay attack

◦ AH sequence number is authenticated.

◦ New SA with new key when sequence number reaches max (232-1)

◦ Replay protection must be implemented by receiver

EITA25 - Computer Security 9

2019-02-11

10

 Header is added to original IP packet

 Fields in header include:

◦ Next header – the type of payload data

◦ Payload length (length of the authentication header – 2)

 Number of 32-bit words minus 2

◦ SPI = Security Parameters Index

 Identifies algorithms and keys.

◦ Sequence number, 32 bits

◦ Integrity Check Value (the MAC value)

 Calculate over all fields except mutable IP header fields and ICV

 Default 96 bits.

EITA25 - Computer Security 10

2019-02-11

11

 Integrity Check Value (Authentication data) is of variable length
(multiple of 32 bits)
◦ Put all mutable fields in headers to zero before calculating checksum

 E.g., TTL, flags and the MAC itself,

EITA25 - Computer Security 11

Next header Payload length RESERVED

Security Parameter Index (SPI)

Integrity Check Value (ICV)

Sequence Number

0 8 16 31

2019-02-11

12

EITA25 - Computer Security 12

Payload (eg TCP, UDP, ICMP)
Original

IP header

AH

(Len, SPI, seq, ICV)

Original

IP header
Payload (eg TCP, UDP, ICMP)

New

IP header

AH

(Len, SPI, seq, ICV)

AH in tunnel mode:

MAC over all immutable fields

MAC over all immutable fields

Payload (eg TCP, UDP, ICMP)
Original

IP header

Payload (eg TCP, UDP, ICMP)
Original

IP header

AH in transport mode:

2019-02-11

13

EITA25 - Computer Security 13

New

IP header

AH in transport mode:

AH in tunnel mode:

MAC over all immutable fields

MAC over all immutable fields

Payload (eg TCP, UDP, ICMP)
Original

IP header

Original IPv6

Ext header

Payload (eg TCP, UDP, ICMP)
OriginalIPv6

ext header
Dest options

Original

IP header
AH

New IPv6

ext header

Payload (eg TCP, UDP, ICMP)
Original

IP header

Original IPv6

Ext header

Payload (eg TCP, UDP, ICMP)
Original

IP header

Original IPv6

Ext header
AH

2019-02-11

14

 ESP = Encapsulating Security Payload (RFC 4303 obsoletes RFC 2406).

 Provides one or both of:
◦ confidentiality

◦ authentication

 Uses symmetric encryption and MACs based on secret keys shared
between endpoints.
◦ Key stored in SA

EITA25 - Computer Security 14

2019-02-11

15

 ESP specifies a header and trailing fields to be added to IP datagrams.

 Fields in header include:

◦ SPI = Security Parameters Index

 Identifies algorithms and keys.

◦ Sequence number 32 bits.

 Fields in trailer include:

◦ Any padding needed for encryption algorithm (may also help disguise payload length).

◦ Padding length.

◦ Next header

 Integrity check value (Authentication data) if authentication is used – the MAC

value.

EITA25 - Computer Security 15

2019-02-11

16

EITA25 - Computer Security 16

Security Parameters Index (SPI)

Integrity Check Value

Sequence Number

0 8 16 31

Payload data

Padding (0 – 255 bytes)

Pad length Next header

Header}

Trailer}

2019-02-11

17

EITA25 - Computer Security 17

ESP in tunnel mode:

MAC scope

MAC scope

Payload (eg TCP, UDP, ICMP)
Original

IP header

ESP in transport

mode:

ESP

trailer

ESP

ICV
Payload (eg TCP, UDP, ICMP)

Original

IP header
ESP header

Payload (eg TCP, UDP, ICMP)
Original

IP header
ESP header

New

IP header

ESP

trailer

ESP

ICV

Payload (eg TCP, UDP, ICMP)
Original

IP header

Encryption scope

Encryption scope

2019-02-11

18

EITA25 - Computer Security 18

ESP in tunnel mode:

MAC scope

MAC scope

ESP in transport

mode:

ESP

trailer

ESP

ICV

Original

IP header

ESP

header

Payload (eg TCP, UDP, ICMP)
Original

IP header

ESP

header

New

IP header

ESP

trailer

ESP

ICV

Encryption scope

Encryption scope

Original IPv6

Ext header

New IPv6

ext header

Payload (eg TCP, UDP, ICMP)
Original

IP header

Original IPv6

Ext header

Payload (eg TCP, UDP, ICMP)
Original

IP header

Original IPv6

Ext header

Original IPv6

Ext header
Dest options Payload (eg TCP, UDP, ICMP)

2019-02-11

19

 Algorithms are not fixed

◦ If an algorithm turns out to be weak we can pick another

 Still, there are mandatory algorithms

◦ We must guarantee that different implementations can be used together

EITA25 - Computer Security 19

ESP Encryption ESP Authentication AH

Req Algorithm Req Algorithm Req Algorithm

MUST NULL MUST HMAC-SHA1-96 MUST HMAC-SHA1-96

MUST- TripleDES-CBC MUST NULL SHOULD+ AES-XCBC-MAC-96

SHOULD+ AES-CBC SHOULD+ AES-XCBC-MAC-96 MAY HMAC-MD5-96

SHOULD AES-CTR MAY HMAC-MD5-96

SHOULD NOT DES-CBC

2019-02-11

20

 Recall MAC in transport mode (IPv4)

 Authentication in ESP does not cover original IP header

◦ If this is needed AH can be added after ESP

◦ Called transport adjacency

 Drawback: Two SAs are needed instead of one

EITA25 - Computer Security 20

Original

IP header

Payload

MAC

ESP

trlr

ESP

auth

AH Payload

MAC

Original

IP header

ESP

header

AH

ESP

2019-02-11

21

 Key negotiation can be

◦ Manual – An administrator configures all communicating systems. Useful in small and static

environments

◦ Automatic – Automated system enabling on-demand creation of keys and SAs.

 Default automated key management protocol is ISAKMP/IKE

◦ Internet Security Association and Key Management Protocol (ISAKMP) defines packet formats to

establish, negotiate, modify and delete SAs, e.g., how to transfer certificates, how to exchange key

material etc.

◦ Internet Key Exchange protocol (IKE) defines how keys can be exchanged. It supports Digital

signatures, public key encryption and pre-shared keys.

◦ IKEv2 proposed in dec 2005.

 VPNs can use IPsec but sometimes the key exchange protocol is proprietary

EITA25 - Computer Security 21

2019-02-11

22

 TLS was previously called SSL (Secure Sockets Layer)

◦ TLS 1.0: 1999 (RFC 2246)

◦ TLS 1.1: 2002 (RFC 4346)

◦ TLS 1.2: 2006 (RFC 5246)

◦ SSL 2.0 prohibited 2011 (RFC 6176)

◦ SSL 3.0 prohibited 2015 (RFC 7568)

◦ TLS 1.3: Aug 2018

 TCP protocol: reliable byte stream between two nodes

◦ Stateful connection-oriented protocol.

◦ Detects lost packets.

◦ Detects out of order packets.

◦ Detects duplicates, etc.

 TCP lacks strong cryptographic entity authentication, data integrity or confidentiality

 Needs met by the TLS protocol

◦ Invented by Netscape (as SSL)

◦ Confidentiality

◦ Message integrity

EITA25 - Computer Security 22

Application Layer

Transport Layer

IP/Internet Layer

Data Link Layer

2019-02-11

23

EITA25 - Computer Security 23

CA

Browser

vendor

Secure Web

Site

User running a

browser

1a. Distribute CA

to browser

2a. Request a certificate

2b. Issue a certificate (sign)

3a. Request

web site
3b. Send website and

certificate chain

1b. Put CA in browser

4. Verify certificate chain

If verification in step 4 is valid, the server and client can set up a secure connection

We look at this part

2019-02-11

24

 SSL/TLS has two layers of protocols

◦ TLS Record Protocol – Provides confidentiality

and message integrity.

◦ TLS Handshake Protocol – authenticate and

negotiate keys

EITA25 - Computer Security 24

◦ TLS Change Cipher Spec Protocol – One byte message that updates the cipher suite

◦ TLS Alert Protocol – Used to send warning and error messages e.g., bad_record_mac and

bad_certificate

◦ Other applications that use the record protocol

TCP

TLS Record Protocol

TLS

Handshake

Protocol

TLS Alert

Protocol
HTTP, other

apps

TLS Change

Cipher Spec

Protocol

IP

2019-02-11

25

EITA25 - Computer Security 25

Application data

Fragment

Compress

Add MAC

Encrypt

Add header

Send to TCP layer

No, not really (due to CRIME attack)

2019-02-11

26

 Adds compression (optional)

 Computes a MAC for the packet using HMAC

 Encrypts the packet using the negotiated cipher, e.g., AES, IDEA, DES,

3DES, RC4, Authenticated encryption modes

◦ RC4 was prohibited 2015

EITA25 - Computer Security 26

 Content type defines upper protocol (8 bits)
◦ Change Cipher Spec: 20

◦ Alert: 21

◦ Handshake: 22

◦ Application data: 23

 Version defined as (8+8 bits)
◦ SSL: 3 and 0

◦ TLS: 3 and {1,2,3}

 Length of Data field (16 bits)

Content

type
Major

version

Minor

version
Length

Data

MAC

Encrypted

Header

2019-02-11

27

 Information seen as data in the record protocol

EITA25 - Computer Security 27

1

Change Cipher Spec Protocol

1 byte

Alert

Alert Protocol

1 + 1 byteLevel Level can be

”warning” or ”fatal”

Length

Handshake Protocol

1 + 3 + ≥ 0 bytesType

Type defines what

type of message it is

Content

Other protocols, e.g., HTTP

≥ 1 byteApplication specific data

2019-02-11

28

 Purpose of handshake

◦ Authenticate server to client

◦ Establish which algorithms to use

◦ Negotiate keys for encryption and MAC

◦ Authenticate client to server (optional)

 10 different message types

 Which types are used and what they look like will depend on mainly two

things

◦ Key exchange method

◦ If server authenticates client

EITA25 - Computer Security 28

2019-02-11

29

EITA25 - Computer Security 29

Client Server

Client hello

Server hello

(Certificate)

(Server Key Exchange)

(Certificate Request)

Server Hello Done

(Certificate)

(Client Key Exchange)

(CertificateVerify)

Change Cipher Spec

Finished

Change Cipher Spec

Finished

In total 9 message types! Number 10 is ”hello request” sent from

server to inform client that it should start a new negotiation.

2019-02-11

30

 Basic problem: Server and client must agree on a secret value

◦ We call this a ”premaster secret”

 RSA – Client generates ”premaster secret” and uses RSA to encrypt it with public key of server

◦ Certificate needed

◦ (Removed in TLS 1.3)

 Ephemeral Diffie-Hellman – The premaster secret is negotiated with Diffie-Hellman and values are

signed with private key

◦ Certificate needed

 Fixed Diffie-Hellman – Diffie-Hellman values are stored in a certificate.

◦ Certificate needed

 Anonymous Diffie-Hellman – unauthenticated Diffie-Hellman key exchange

◦ No certificate needed

◦ Vulnerable to Man-In-The-Middle attacks

EITA25 - Computer Security 30

2019-02-11

31

 We first look at messages when RSA is used

 Client Hello

◦ ClientRandom – 28 bytes used when calculating master secret

◦ Suggested cipher suites – Suites implemented on client side e.g., TLS_RSA_WITH_AES_256_CBC_SHA

◦ Suggested compression algorithms – compression algorithms implemented by client.

 Server Hello

◦ ServerRandom – 28 bytes used when

calculating master secret

◦ Decided cipher suite to use – Server

picks a suite that is implemented on

both client and server

◦ Decided compression to use

EITA25 - Computer Security 31

2019-02-11

32

 Certificate (server) – Server sends his certificate (chain) to client

 Server Key Exchange – Not used for RSA

 Certificate Request – Sent if server wants the client to authenticate itself

 Server Hello Done – Indicates that

the server hello is done

EITA25 - Computer Security 32

2019-02-11

33

 Certificate (client) – sent if server has requested a certificate

 Client Key Exchange – Client generates a pre-master secret and encrypts this with the

public key of the server. Used later to compute master secret.

 Certificate verify – A signed hash based on the preceeding messages. Used to verify that

the client has the private key. Misuse of certificates impossible.

 Change Cipher Spec – After this message the client starts using

the new algorithms and keys

 Finished – Contains the encrypted

hash of previous messages

 Change Cipher Spec – After this

message the server starts using

the new algorithms and keys.

 Finished – Contains the encrypted

hash of previous messages

EITA25 - Computer Security 33

2019-02-11

34

 If Diffie-Hellman is used some messages will look different

 Certificate (Server) – If Anonymous Diffie-Hellman is used no certificate is

sent

 Server Key Exchange – If Anonymous or Ephemeral Diffie-Hellman is used

the parameters are sent here (p, g and gx mod p)

◦ For Ephemeral Diffie-Hellman the values are signed

◦ For Anonymous Diffie-Hellman the values are not signed

 Certificate (Client) – If Fixed Diffie-Hellman is used the parameters are

sent in the certificate

 Client Key Exchange – If Anonymous or Ephemeral Diffie-Hellman is used

the client parameters are sent here

◦ For Ephemeral Diffie-Hellman parameters can be signed if server demands it

EITA25 - Computer Security 34

2019-02-11

35

Keys used are extracted from keyblock

 Pre-master secret
◦ For RSA, random 48 byte string generated by client. Sent to server by encrypting it with server’s

public key
◦ For Diffie-Hellman, this is the negotiated value in the key exchange

 Master secret and keyblock is calculated (in TLS) by both client and server as

master_secret = PRF(pre_master_secret, ”master secret”, ClientRandom || ServerRandom)

keyblock = PRF(master_secret,”key expansion”, ClientRandom || ServerRandom)

PRF given by:

PRF(S1 || S2, label, seed) = P_MD5(S1, label || seed)  P_SHA-1(S2, label || seed)

 P_hash is an iterated HMAC producing a variable length output.

EITA25 - Computer Security 35

2019-02-11

36

 Provide a known seed to the PRF, similar to a salt in password hashing

 Allow both client and server to contribute to the key generation (key

agreement)

 Avoid replay attacks

◦ A sniffed session cannot be replayed by a fake client or fake server

◦ New random number → new MAC in finish message

EITA25 - Computer Security 36

2019-02-11

37

 Different version numbers

 Different functions to compute master secret and keyblock (still MD5 and SHA)

 Padding in SSL is minimum necessary, while in TLS it is can be any size

◦ Arbitrary padding size helps preventing traffic analysis in which length of messages is analyzed

 Finished message calculated differently. TLS uses PRF.

 Fields included in certificate verify hash are different.

 HMAC in record layer computed slightly different

EITA25 - Computer Security 37

TLS: HMAC = H[(K  opad) || H[(K  ipad) || M]]

SSLv3: HMAC = H[(K || opad) || H[(K || ipad) || M]]

2019-02-11

38

 RSA key exchange removed

◦ Only Diffie-Hellman allowed (elliptic curves)

 CBC-mode is not used for block ciphers

◦ BEAST attack, POODLE attack, Lucky 13-attack

 Round trip time (RTT) in handshake has been decreased

◦ TLS <1.3: 1-RTT for resumptions, 2-RTT for initiation

◦ TLS 1.3: 0-RTT (Pre-shared key, no PFS for first client data) or 1-RTT for

resumptions, 1-RTT for initiation

EITA25 - Computer Security 38

2019-02-11

39

 Any CA that you trust can create a certificate that you will trust

 Typical connection (no attack)

1. Alice sends Client Hello

2. Intermediate server forwards Client Hello

3. Web page answers with Server Hello, Certificates and Server Hello Done

4. Intermediate server forwards Server Hello, Certificates and Server Hello Done

5. User encrypts pre-master secret with web page public key

Result: Only user and web page knows secret keys

User can check address bar to see that certificate actually belongs to web page

EITA25 - Computer Security 39

Server/router/other computer TLS protected web pageuser
1 2

34
5

2019-02-11

40

 This could happen instead

1. Alice sends Client Hello

2. Intermediate server looks at destination and creates a certificate for destination (knowing the

private key), and returns this certificate together with Server Hello and Server Hello Done

3. Intermediate server sets up a new TLS connection to the web page that the user requested.

4. Web page accepts this connection (of course)

5. When user sends encrypted information to web page, intermediate server can decrypt and

possibly make changes and then re-encrypt traffic

EITA25 - Computer Security 40

Server/router/other computer TLS protected web pageuser
1 3

42

5

User checks address bar to see that certificate actually belongs to web page (but it does not)

This will work as long as there is a trusted CA certificate from the intermediate server

in the browser, e.g., corporate networks can use this

5

2019-02-11

41

 In January 2013, it was found that Nokia did a variant of a MITM attack

1. User wanted to connect to web page using TLS, but connection was made to a Nokia server
(forced by browser)

2. Nokia server returned valid certificate for itself

3. Nokia server made TLS connection to web page

4. Web page accepted connection from Nokia’s server

5. All communication was decrypted and re-encrypted by Nokia’s server

 Nokia server was just a proxy (debatable if it counts as MITM)

 Upside: Data could be compressed and rewritten in order to provide more efficient browsing

 Downside: Nokia could read your passwords, bank info, medical journals etc.

EITA25 - Computer Security 41

Server/router/other computer TLS protected web pageuser
1 3

42

55

2019-02-11

42

 February 2014

 Small implementation mistakes can have huge security impact

 Code used in iOS 6, iOS 7, OS X (some versions)

 Result: Man-in-the-middle attack possible when Ephemeral Diffie-Hellman was used

◦ Signature on Diffie-Hellman parameters was not checked at all

EITA25 - Computer Security 42

SSLVerifySignedServerKeyExchange(...)
...
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

...
err = sslRawVerify(...)

fail:
...
return err;

Do this if error

Always do this

Never do this

Always do this

Small, simple mistake –

terrible consequences

