Windows Security

- Windows XP evolved from Windows 2000
- Windows 10, 8, 7 and Vista evolved from XP
- ▶ Similar security solution
- · Things have been added, but ideas are the same
- Standalone computers administered locally
- Domains used for centralized administration
- · Domain controller (DC) has information about users
- · Acts as a trusted third party

Rich support for managing security

EITA25 - Computer Security

Design Motivation

- ▶ Security was designed to meet requirements for C2 rating in Orange Book
 - Secure logon users must be uniquely identified
 - Discretionary access control Owner determines access
 - Auditing Record security related events in a logfile
 - Object reuse protection Initialize all objects before giving access to users
 - Trusted path Functionality to detect spoofing attacks at authentication time (called SAS in Windows)
- Trusted facility management Separate accounts for users and administrators
- Windows NT 3.5 SP3 was the first Windows version to earn C2 rating (1995)
- Windows NT 4 SP6a earned C2 rating in 1999

EITA25 - Computer Security

Networked Computers, Domains and Workgroups Workgroup All accounts are local Resources can be shared but are managed locally Per-to-peer No computer in charge Typically at most 20 computers Active Directory Domain Controller Login to domain account from any computer Centralized administration Can be thousands of computers

Windows Logon (somewhat simplified)

- Winlogon.exe handles the logon and responds to the Secure Attention Sequence (SAS)
- · CTRL+ALT+DEL
- Winlogon uses libraries that authenticates the user
 - · Can be libraries for passwords, smartcards, biometric data etc
- Local Security Authority (LSA) creates an access token
 - LSA is responsible for the local security policy (who can log in, password policies, privileges, what should be audited etc)
- Password hashes are stored in SAM
- Security Accounts Manager

Security Accounts Manager (SAM)

- ▶ Stores user account information
- Username
- Full name
- · Expiration date
- Password dates (date of last change, expiry, when it can be changed next time, if it can be changed)
- · Logon hours and workstations (thrown out a certain time or continue)
- · Profile path and logon script name
- Home directory
- Groups
- Locked while machine is running

EITA25 - Computer Securit

Local Accounts VS Domain accounts

- Local accounts
- NTLM used as authentication protocol
- Domain accounts
- Kerberos V5 used as authentication protocol
- Mutual authentication
- This will be covered in detail later in the course
- NTLM used in some cases
- · Unilateral authentication

EITA25 - Computer Security

NTLM Hash and Protocol Can you find problems here? Challenge response > Server sends 8 byte random challenge Response calculated as: MD4(password) gives 16 byte result (NTLM hash stored in SAM database) Pad with 5 zero bytes → 21 bytes Split into 3 DES keys and encrypt challenge with each key · 24 byte response NTLM hash MD4 920a3bdfe12e5fa537d7e8b8c6a064fe 920a3bdfe12e5f DES a5ef3810bf7aced4 challenge response a537d7e8b8c6a0 DES 910af3418cd8e9af challenge 64fe00000000000 DES 72ad34ev019baf2d challenge

NTLM Hash, Problems

- **Problem 1:** MD4 is a very fast hash function
- Problem 2: No salt is used so time-memory tradeoff attacks (rainbow tables) can be used

LM Hash Can you find problems here? If wanted, both NTLM and LM response are used This was default before Windows Vista ▶ LM hash calculated as · Convert password to uppercase and pad to 14 bytes Split into two parts of 7 byte each → two DES keys • Encrypt "KGS!@#\$%" with the two keys to get 16 bytes LM hash which is stored in the SAM database LM response calculated same way as NTLM response 53454352455457 KGS!@#\$% DES SecreTWoRd ----> SECRETWORD 4f524400000000 KGS!@#\$% DES fe52438160a64e6c EITA25 - Computer Securi

LM Hash, Problems

- ▶ **Problem 1:** DES is a fast block cipher
- **Problem 2:** No salt here either...
- ▶ **Problem 3:** Passwords up to 14 characters are never better than passwords of 7 characters
- Problem 4: There are no lowercase characters in the effective character set

EITA25 - Computer Security

Access Control

- Security Reference Monitor (SRM) is responsible for determining access control
- ▶ Three parameters are considered
 - Identity of subject (SID)
- Type of access
- Object security settings (Security Descriptor)

SID

- Security Identifier
- Unique for each user or group
- ▶ Format:

S-R-I-SA-SA-SA-N

- S: The letter S (just means that the string is a SID)
- R: revision number (1)
- I: Identifier authority (5 for user accounts)
- > SA: subauthority (specifies domain or computer)
- o Can be up to 14 groups, but 3 is typical
- N: relative identifier, incremented for each new principal

Known SIDs

- Generic groups and users
- ▶ S-1-1-0 Everyone, a group that includes all users
- ▶ S-1-5-20 Network Service
- ▶ S-1-5-18 SYSTEM, local operating system
- ▶ S-1-5-SA-SA-SA-500 Administrator
- ▶ S-1-5-SA-SA-SA-501 Guest account (no password required)
- ► S-1-5-SA-SA-SA-512 Domain Admins (global group)

EITA25 - Computer Security

Access Token

- After successful authentication LSA builds an access token
- Processes which run as the user has a copy of the token
- When a process interacts with a securable object, token determines authorization level

User SID

SIDs of groups the user is member of

List of privileges

Default DACL, Owner, Group

Miscellaneous

e.g

e.g., restricting SIDs

EITA25 - Computer Security

Privileges

- > The right to perform system related operations
 - · Shutting down
- · Change system time
- Backup files
- · Generate audit
- Applies only to local computer. A user can have different privileges on different machines in a domain.
- Privileges can be assigned to both users and groups
- Access token is checked when user tries to perform privileged operation
- Differs from access rights
- · Access to resources and tasks, not objects
- Stored with subject
- · Admin assigns privileges
- > Stored in access token produced at logon

EITA25 - Computer Security

Two Kinds of Access Tokens

- Token is either a primary access token or an impersonation access token
- ▶ Primary access token access token of the user account associated with the process.
- · Every process has this
- Impersonation access token allows a thread to execute in a different security context than the process owner.
- · A thread may additionally have an impersonation access token
- Example: File server server runs with high privileges and can access any files
- · Threads handle concurrent user requests
- Thread get token of user → access based on user's token
- Ability to create access token is a privilege
- SeImporsonatePrivilege

Example: Accessing Object

Two processes (subjects) wants read access to an object

Access Rights (in the ACE)

- > Since there are so many different types of objects access rights look different for different types
- > Standard access rights apply to (almost) all objects
 - DELETE delete the object
 - READ_CONTROL read info in security descriptor (owner, group and DACL)
 - WRITE_DAC write access to the DACL
 - WRITE_OWNER write access to the field "owner" in the security descriptor
 - · SYNCHRONIZE The right to synchronize with the object

EITA25 - Computer Security

Generic Access Rights

- > Since there are many different types of objects, there are very many different types of access rights
- Generic access rights gives a mapping to specific access rights for a type of objects

FILE_EXECUTE FILE_READ_ATTRIBUTES GENERIC_EXECUTE STANDARD_RIGHTS_EXECUTE SYNCHRONIZE FILE READ ATTRIBUTES FILE_READ_DATA GENERIC_READ FILE_READ_EA STANDARD_RIGHTS_READ SYNCHRONIZE FILE APPEND DATA Example – Files and directories FILE_WRITE_ATTRIBUTES FILE WRITE DATA GENERIC_WRITE FILE_WRITE_EA STANDARD RIGHTS WRITE SYNCHRONIZE

Access Mask

▶ The access rights are given by a 32-bit integer

Bits	Access Right
0-15	Specific rights for the current object type
16-22	Standard rights
23	Access system security (e.g., SACL)
24-27	reserved
28	generic all
29	generic execute
30	generic write
31	generic read

Access Control, Network Shares

- Users must go through two ACL's to access a file via a share
- ACL on the share
- · ACL on the file itself
- User's effective permission through a file share is determined by masking both sets of ACL's together.
- Example 1:
- Client sets share permission to read only for everyone and file permission to read+write for everyone
- Result: Users on client machine get read+write, network users get read
- Example 2:
 - · Client sets share permission to full control for everyone and file permission to read for everyone
 - · Result: Users on client machine get read access, network users get read access

The Registry

- Central database for Windows configuration data
- Just files on the harddisk
- ▶ Entries are called *keys* and *values*
- A registry Hive is a group of keys, subkeys, and values in the registry stored in a file
 "Registreringsdatafil" in swedish
- Protecting the integrity of registry data is important
 - Example: The search path is set in registry, if an attacker can modify it, malicious software can be inserted/executed.
- Proprietary format: registry editor (Regedit.exe)
- ▶ Can be used by applications to store configurations

EITA25 - Computer Security

Temporary Hives

- ▶ HKEY_LOCAL_MACHINE\hardware
- · Hardware is detected when system starts
- ▶ HKEY_LOCAL_MACHINE\system\clone
- Built during startup, saved as
 - $\label{local_MACHINE} HKEY_LOCAL_MACHINE\SYSTEM\Select\LastKnownGood\ Control\ Set\ if\ startup\ is\ successful$
- If there is a problem to start (e.g., if an installed driver has damaged the system), then LastKnownGood configuration can be used by copying this to CurrentControlSet

EITA25 - Computer Security

Restricted Context

- ▶ Application can start process with **restricted token**
- Process can start process or thread with restricted token
- · Can be either primary token or impersonation token
- **Example 1:** Untrusted webpages can be displayed with restrictions
- **Example 2:** Email attachments can be opened with restrictions
- Restrict by (one or more of):
- 1. Remove privileges
- 2. Set deny-only attribute to SIDs
- 3. Specify restricting SID

User Account Control (UAC)

- Introduced in Windows Vista
- Administrators get two access tokens when logging in
 - · One administrator token
 - · One standard user token
- > Standard user token used unless administrator privileges are needed
 - · User has to actively acknowledge use of administrator token
- ▶ Windows 7+ uses UAC, but not all programs ask for explicit permission

EITA25 - Computer Security

Mandatory Access Control

- Windows Vista and later include mandatory access control (MAC)
- · Called Integrity Control
- Access tokens have an integrity level
- · Untrusted (Processes started by group Anonymous)
- · Low integrity (e.g., IE in protected mode)
- Medium integrity (Used by normal applications when UAC is enabled)
- High integrity (Admin applications started through UAC, normal applications if UAC is disabled)
- System integrity (Used by some system processes)

EITA25 - Computer Security

Mandatory Access Control

- Each object can also have an integrity level stored in the Security Decriptor's SACL
- > Default for newly created objects:
- o If access token is lower than medium, integrity level of object is same as in access token
- · If access token is medium or higher, integrity level of object is medium
- Subject has label S, object has label O
- Policy defined by (total) ordering:
 - Write access granted if O ≤ S
- Subjects integrity level must dominate object's integrity level in write operations
 - Checked before DACL

Example, Use of MAC (or MIC)

- ▶ Internet Explorer 7 can run in **Protected Mode**
- Will run with "low integrity" access token
- ▶ Can not be forced to make changes to operating system files, registry, etc
 - · However, it can read all this data
- Can write to history, cookies etc.
- > This can be compared to the Biba security model

