
2019-02-22

1

 Buffer overrun is another common term

 Result of programming error

EITA25 - Computer Security 1

A condition at an interface under which more input can be placed into a buffer or data 

holding area than the capacity allocated, overwriting other information. Attackers exploit 

such a condition to crash a system or to insert specially crafted code that allows them to 

gain control of the system. 

NIST Glossary of Key Information Security Terms

Buffer Overflow



2019-02-22

2

 Morris worm 1988, used buffer overflow in fingerd. 

◦ 6000 computers infected within a few hours (10% of internet)

 Code Red 2001 used buffer overflow in Microsoft IIS

 Blaster worm 2003

 Slammer worm 2003

 Sasser worm 2004

 Consequences

◦ Crash program

◦ Change program flow

◦ Arbitrary code is executed

 Possible payloads

◦ Denial of Service

◦ Remote shell

◦ Virus/worm

◦ Rootkit

EITA25 - Computer Security 2



2019-02-22

3

 CWE-119: Failure to Constrain Operations within the Bounds of a Memory 

Buffer

◦ More than 10133 known vulnerabilities with this weakness (since 1999) 

◦ 1902 since Jan 2018

◦ Also includes e.g., 

Heartbleed

EITA25 - Computer Security 3



2019-02-22

4

We will follow the description in ”Aleph One - Smashing the Stack for Fun and Profit”

(From 1996, but still very much worth a read)

 Find a buffer to overflow in a program

 Write the exploit

◦ Inject code into the buffer

◦ Redirect the control flow to the code in the buffer

 Target either stack or heap

 Note: Many things that will be mentioned are specific for compilers, 

processors and/or operating systems. A typical behaviour will be described.

EITA25 - Computer Security 4



2019-02-22

5

 A process has its own virtual 

address space

 Stack – last in first out, LIFO 

queue

 Heap – used for dynamic memory 

allocation

 Global data – Global variables, 

static variables

EITA25 - Computer Security 5

Kernel code 

and data

Stack

Extra

Memory

Heap

Global Data

Program 

machine code

Top of memory

Bottom of memory

Main memory



2019-02-22

6

 Stack grows down (Intel, Motorola, SPARC, 

MIPS)

 Function parameters – input to function

 Return address – where to return when 

procedure is done

 Saved frame pointer – where the frame pointer 

was pointing in the previous stack frame

 Local variables

EITA25 - Computer Security 6

Function parameters

Return address

Saved frame pointer

Local variables

Top of memory

Bottom of memory



2019-02-22

7

EITA25 - Computer Security 7

void function(int a, int b, int c) {

char buffer1[8];

char buffer2[12];

}

int main() {

function(1,2,3);

}

Example program
Function parameters

Return address

Saved frame pointer

Local variables

3,2, and 1 are pushed onto 

the stack

Function is called

Old frame pointer is stored 

here and new frame pointer 

is set to value of stack 

pointer

8 bytes for buffer1 and 12 bytes 

for buffer2 are allocated. 

Top of memory

Bottom of memory

4 4 4

cba

44

retsfpbuffer1buffer2

812 Top of memoryBottom of memory



2019-02-22

8

 Copy a large buffer into a smaller buffer. 

 If length is not checked, data will be 

overwritten

 strcpy() does not check that size of destination 

buffer is at least as long as source buffer.

 After strcpy(), the function tries to execute 

instruction at 0x41414141

 Program will result in segmentation fault –

return address is not likely in process’s space

EITA25 - Computer Security 8

void function(char *str) {

char buffer[16];

strcpy(buffer, str);

}

int main(){

char large_string[256];

int i;

for (i = 0; i < 255; i++) {

large_string[i] = ‘A’;

}

function(large_string);

}

AAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAA

16 4 4 4

*strretsfpbuffer



2019-02-22

9

 buffer1 allocates 8 bytes.

 Saved frame pointer allocates 4 bytes 

so r is pointing to the return address

 Then r is incremented by 8 bytes. 

 This will cause the return address to be 

8 bytes after what it was supposed to 

be.

 The instruction x=1 will be skipped.

EITA25 - Computer Security 9

void function(int a, int b, int c) {

char buffer1[8];

char buffer2[12];

int *r;

r = buffer1 + 12;

(*r) += 8;

}

int main() {

int x = 0;

function(1,2,3);

x = 1;

printf(“%d\n”, x);

}

4 4 4

cba

4

+8

4

retsfpbuffer1buffer2

812 Top of stackBottom of stack

r

4



2019-02-22

10

 We managed to overflow the buffer and overwrite the return address –

and crash the program

 We managed to change the return address so that instructions in the 

calling functions were ignored (skipped)

 Not much damage yet, it is just a program that doesn’t work.

 Now, we want to combine this and additionally run our own code.

 Basic idea: Put code in the buffer and change the return address to point 

to this code!

EITA25 - Computer Security 10



2019-02-22

11

 Compile the code into assembly 

language

 Find the interesting part and save 

this

 Problem: We can not have NULL in 

the resulting code.

 Solution: Replace by xor with same 

register to get NULL, then use this 

register when NULL is needed.

 Replace code with its hex 

representation

EITA25 - Computer Security 11

#include <stdio.h> 

void main() { 

char *name[2];

name[0] = "/bin/sh"; 

name[1] = NULL; 

execve(name[0], name, NULL); 

}

char shellcode = 

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46

\x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e

\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8

\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/sh";



2019-02-22

12

 Large_string is filled with the start 

address of buffer.

 Then shellcode is put into large_string

 Then large_string is copied into buffer 

and return address is overwritten with 

start address of buffer

S:  Shellcode

R: Return address (4 byte)

EITA25 - Computer Security 12

char shellcode = 
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b" 

"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd" 

"\x80\xe8\xdc\xff\xff\xff/bin/sh"; 

char large_string[128];

void main() { 

char buffer[96]; 

int i; 

long *long_ptr = (long *)large_string;

for (i = 0; i < 32; i++) 

*(long_ptr + i) = (int) buffer; 

for (i = 0; i < strlen(shellcode); i++)

large_string[i] = shellcode[i];

strcpy(buffer,large_string); 

}

SSSSSSSSSSSRR..........R     R        R

96 4 4

retsfpbuffer

R

Adress R



2019-02-22

13

 What if we want to do the same thing to another program (not our own)?

 We do not know the address of the start of the buffer!

 We have to guess it but if the guess is wrong the attack will not work.

 We can get some help when guessing

◦ Stack will always start at the same address – Run another program and find out 

roughly where the buffer might be

◦ Use NOP instructions so that the guess only has to be approximate – if we return to 

anywhere inside the run of NOPs, it will still work

EITA25 - Computer Security 13

NNNNNSSSSSR.........R     R         R

96 4 4



2019-02-22

14

 gets(char *str) – Read a string and save in buffer pointed to by str

 sprintf(char *str, char *format, ...) – Create a string according to supplied 

format and variables

 strcat(char *dest, char *src) – append contents of string src to string dest

 strcpy(char *dest, char *src) – Copy string in src to dest

EITA25 - Computer Security 14



2019-02-22

15

 A canary word is inserted before the local variables

 Before returning from process, the canary is checked so that it has not 

changed

 If changed → terminate

 Can be both static or random

 If value is known to attacker it can just be overwritten with the same 

value

 Implemented in GCC and can be used by including option –fstack–

protector

 Some distributions have it enabled by default (OpenBSD, Ubuntu) 

and some do not.

 Visual C++ has /GS flag to prevent buffer overflow. Windows Server 

2003 was compiled with this switch and was immune to the Blaster 

worm.

 Very efficient if value can be kept hidden

EITA25 - Computer Security 15

Function parameters

Return address

Saved frame pointer

Local variables

Top of memory

Bottom of memory

Canary value



2019-02-22

16

 The canary solution can detect the attack. It is better if it can be prevented

 Do not use the unsafe functions, replace e.g., strcpy() by strncpy() and 

strcat() by strncat().

 Check source automatically using software

 Use Java instead of C or C++ (but remember that the Java VM can be a C 

program)

 Increased awareness has lowered the number of applications vulnerable to 

this attack

◦ Interest is shifted towards web application attacks

EITA25 - Computer Security 16



2019-02-22

17

 Recall that the shellcode was copied into the buffer located on the stack.

 Stack usually contains integers, strings, floats, etc.

 Usually there is no reason for the stack to contain executable machine code

 On modern processors this can be enforced on hardware level using the 

NX-bit.

 Called Data Execution Prevention (DEP) in Windows.

EITA25 - Computer Security 17



2019-02-22

18

 Stack is no longer executable due to W ⊕ X.

 Let's jump somewhere else then!

 libc – standard C library which contains lots of functions.

 Typical target system(const char *command);

 Executes any shell command (e.g. /bin/sh to start a new shell)

EITA25 - Computer Security 18



2019-02-22

19

 Randomizes location of

◦ Stack

◦ Heap

◦ Dynamically loaded libraries

 Exact addresses of buffers will be 

unknown

 Exact address of libraries (e.g., libc) 

will be unknown

EITA25 - Computer Security 19

Stack

Heap

libraries

Stack

Heap

libraries

Stack

Heap

libraries



2019-02-22

20

 SQL – Structured Query Language

 Both ANSI standard (1986) and ISO standard (1987)

 Language designed to retrieve and manipulate data in a Relational Database 

Management System (DBMS)

 Example query string

EITA25 - Computer Security 20

Select ProductName from Products where ProductID = 35

Defines columns to 

return (wildcard * 

can be used)

Defines which table 

to return from

Defines which rows to return. 

(All rows where expression 

evaluates to TRUE)



2019-02-22

21

Table: users

EITA25 - Computer Security 21

userID name lastName secret position

1 Alice Smith ashfer7f Doctor

2 Bob Taylor btfniser78w Nurse

3 Daniel Thompson dtf39pa Nurse

select name, lastName from users where position = nurse

Will return

name         lastName

Bob              Taylor

Daniel          Thompson 



2019-02-22

22

 Consider the following PHP code:

EITA25 - Computer Security 22

$passw = $_POST[”LoginSecret”];

$query = ”SELECT  *  FROM users WHERE secret = ’ ”. $passw.” ’”;

$result = mysql_query($query);

1. Read name from posted data (user input)

2. Create a SQL query string

3. Make the query and save output in result



2019-02-22

23

 Does not matter if you have

◦ Most up-to-date version of OS and web server

◦ Firewall perfectly configured

 Problem is not in webserver, database or network, but in the web 

application

 Programming error due to improper (or no) input validation

 Popular to implement your own application that can access the database

◦ Many implementations

◦ Many systems vulnerable

EITA25 - Computer Security 23



2019-02-22

24

EITA25 - Computer Security 24

$query = ”SELECT  *  FROM users WHERE secret = ’ ”. $passw .” ’”;

Example of expected input: ashfer7f

$query = SELECT  *  FROM users WHERE secret = ’ashfer7f’;

Example of unexpected input:  a' OR 'x'='x

$query = SELECT  *  FROM users WHERE secret = ’a’ OR ’x’=’x’;

Example of unexpected input:  ’; drop table users;--

$query = SELECT  *  FROM users WHERE secret = ’ ’; drop table users;--’;



2019-02-22

25

 Escape quotes using mysql_real_escape_string()

◦ ” becomes \” and ’ becomes \’

 Use prepared statements – separates query and input data (see web security 

course for details)

 Check syntax using regular expressions

◦ Email, numbers, dates etc

 Turn off error reporting when not debugging

 Use table and column names that are hard to guess

EITA25 - Computer Security 25

Always assume that input is malicious



2019-02-22

26

EITA25 - Computer Security 26

1 Improper Neutralization of Special Elements used in an SQL Command  ('SQL Injection') 

2 Improper Neutralization of Special Elements used in an OS Command  ('OS Command Injection') 

3 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') 

4 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') 

5 Missing Authentication for Critical Function 

6 Missing Authorization 

7 Use of Hard-coded Credentials 

8 Missing Encryption of Sensitive Data 

9 Unrestricted Upload of File with Dangerous Type 

10 Reliance on Untrusted Inputs in a Security Decision 

11 Execution with Unnecessary Privileges 

12 Cross-Site Request Forgery (CSRF) 

13 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

From CWE/SANS Top 25 Most Dangerous Software Errors 

(http:// cwe.mitre.org/top25/)



2019-02-22

27

EITA25 - Computer Security 27



2019-02-22

28

EITA25 - Computer Security 28

http://xkcd.com/327/

Handwritten votes, Swedish Election 2010

...;Halmstad;15;Hallands län;306;Snöstorp 6;Pondus;1

...;Halmstad;15;Hallands län;904;Söndrum 4;pwn DROP TABLE VALJ;1

...;Halmstad;15;Hallands län;1001;Holm-Vapnö;Raggarpartiet;1


