2020-02-02

LUND

UNIVERSITY

EITA25 Computer Security (Dataséakerhet)
Unix (and Linux) Security

PAUL STANKOVSKI WAGNER, EIT, 2020-02-03

S

Unix (and Linux) Security

Identification and Authentication
Access Control
Other security related things:
— Devices, mounting file systems
— Search path
— TCP wrappers
— Race conditions
NOTE: filenames may differ between OS/distributions

LUND

UNIVERSITY

2

2020-02-02

2020-02-02

Users

Principals (users) have unique UIDs (user 1Ds)
— System cares about ID, not name

— Several users can have different names but same ID.
Then they are treated as the same.

Superuser (root) has UID =0
— There is only one superuser
Stored in /etc/passwd

Processes are subjects

LUND
UNIVERSITY

3

UIDs for Processes

* Real user ID — The ID of the logged in principal
— Can only be changed by root (effective user ID = 0) — this is how login works
* Effective user ID — The ID used for access control

— Can be changed by root (effective user ID = 0) to anything
» Used by processes with effective user ID = 0 when they temporarily access files as a less
privileged user

— Can be changed by anyone (any effective user ID) to real user ID
» This process has to be able to get back to effective user ID =0

» Same rules apply to group ID

LUND

UNIVERSITY

2020-02-02

2020-02-02

Groups

+ Can not associate multiple user IDs with one file
— We have to put users in groups if we want several users to have access to the file
» Every user belongs to a primary group.
 Older Unix: Can only be in one group at a time
* Newer Unix and Linux: Can be in several groups at the same time
— New files are associated with current group ID of user
— Process group ID is the current group ID of user running the process
« Change group (newgrp)
* Primary group given in /etc/passwd
 Secondary groups in /etc/group
— Agroup can not belong to a group

users:x:100:

Students:ix:1000:a3lice,bob Ltﬁ&D

UNIVERSITY

5

Authentication

2020-02-02

Salt

\ 4

Password

Hash function

v

Password file

Hash’

Hash

« Salt is always used

« Hash function and salt will depend on OS

* We look at three variants

\

Yes/No
—)

LUND

UNIVERSITY

6

2020-02-02

Traditional crypt (Password Hashing)

Design dates back to 1976
Based on DES
Password up to 8 characters, salt 12 bits
— Take least significant 7 bits — 56 bit key
— Encrypt zero string 25 times with DES
— Ifbiti=1in salt, swap bits i and i + 24 in E-box output
— Output 12 + 64 = 76 bits. Encode to 13 characters.

Problems: Short passwords, short salts, constant cost (and fast function)

LUND

UNIVERSITY

7

2020-02-02

Other Alternatives — MD5 crypt

* MD5 crypt
— Developed for FreeBSD to avoid export restrictions and allow longer passwords
(up to 254 hits)
— Algorithm uses 1000 iterations — slow
— Salt 12-48 bits
— Output: 1 ’salt’ $ 128 bit hash output

* Problem: Constant cost

LUND

UNIVERSITY

8

Other Alternatives — bcrypt

Based on block cipher Blowfish

Password up to 72 characters, 128-bit random salt
Internal loop with variable cost

Output $2a$cost$salt + 192 bit hash output

Default in OpenBSD

LUND

UNIVERSITY

2020-02-02

Comparison

2020-02-02

DES crypt MD5 crypt bcrypt
Password length max 8 chars | virtually any | max 72 chars
Salt length 12 bits 12-48 bits 128 bits
Variable cost No No Yes
Evals/sec 1,000,000 10,000 450

» Evals/sec based on 3.2 GHz processor, approximate values given

LUND
UNIVERSITY

10

10

2020-02-02

Final words on our password discussion

* ”All problems solved” is kind of bullshit

» Some devices can be really fast at a low cost
— With enough money they are really really really fast
— Several instances can be implemented in parallel
« Can no longer compare
— CPU —’needed” when verifying password
— GPU, FPGA, ASIC — used by attackers EPGA/ASIC

 Make this more fair by making hashing more difficult (costly)
for GPUs, FPGAs and ASICs

« Example: scrypt — requires memory as well as CPU cycles

LUND
UNIVERSITY

11

11

The File /etc/passwd

2020-02-02

« Store user (principal) information

Format:

username:password:UID:GID:ID string:home directory:login shell

* File is world readable
« Example:

alice:x:1004:100:Alice:/home/alice:/bin/bash
bob:%:1005:100:Bob: /home/bob: /bin/bash

LUND

UNIVERSITY

12

12

2020-02-02

The File /etc/shadow

 Save passwords in a non-world readable file
— Username
— (Hashed) password
— Date of last change (days since Jan 1, 1970)
— Minimum days between password changes (0 means anytime)
— Maximum days of validity
— Days in advance to warn user about change
— Days account is active after password expired
— Date of account disabling (days since Jan 1, 1970)
— Last entry is reserved

alice:9SuDfhDz3112U0:13920:30:180:7:2:146009:
bob: IBDXWbkBirMfU:13920:0:99999:7:::

LUND
UNIVERSITY

13

13

2020-02-02

Access Control

* Discretionary access control — owner of file can change permissions
 Three categories: User (owner), Group, Other (world)
» Three access rights: Read, Write, Execute

alice@home:>1ls -1

totalt 8

drwxr-xr-x 2 alice Students 48 2020-02-03 06:18 directory
-rw-rw-r-- 1 alice Students 22 2020-02-03 06:19 filel
-rw-r--r-- 1 alice Students 9 2020-02-03 06:19 file2

Other info from Is -I
Link counter, owner, group, size, date of last change, name

LUND

UNIVERSITY

14

14

Order of Checking

2020-02-02

1. Owner

2. Group

3. Other
Consequence:

if owner =r and other = rw then owner has no write permission

alice@home:>1s -1
totalt O
-r--rw-rw—- 1 alice Students 0 2020-02-03 06:20 file

alice@home:>echo hello > file
bash: file: Atkomst nekas

bob@home:>1s -1

totalt O

-r--rw-rw- 1 alice Students 0 2020-02-03 06:20 file
bob@home:>echo hello > file

bob@home:>_

LUND
UNIVERSITY

15

15

Permissions For Directories

2020-02-02

» Read = list the directory

» Write = Delete, rename and insert files in directory
» Execute = access directory and access files in directory

alice@home:>1s -la

alice@home:>rm —-f file
alice@home:>

t 1t O
€:::>—xr—x 2 alice Students 72 2020-02-03 06:21 .
d r-xr-x 8 alice Students 384 2020-02-03 06:21 ..
-rw-rw-rw- 1 alice Students 0 2020-02-03 06:21 file
alice@home:>rm file
rm: kan inte ta bort ”“file”: Atkomst nekas
alice@home:>1ls -la

t o0

-Xr-x 2 alice Students 72 2020-02-03 06:21 .
drwxr-xr-x 8 alice Students 384 2020-02-03 06:21 ..
-rw-r--r-- 1 root root 0 2020-02-03 06:21 file

LUND

UNIVERSITY

16

16

2020-02-02

Change Permissions — chmod

 Used to change permissions on files

« Mnemonics can be used: user, group, other, all, read write
execute.

« Examples:
chmod u+rw file
chmod u=r file
chmod a+rwx file
chmod u-w,g+r,o+r file =N
chmod a-rwx,ut+r filel file2

LUND

UNIVERSITY

17

17

Change Permissions — chmod

« Alternatively, numbers can be used.
 See each group of permissions as one number.

— Read =4
— Write =2 Sum gives permission
— Execute =1
« Example:
chmod 754 file fi:ii?:fff;cﬂ::e7::ufl;-:;is 411: gtzgféz—os 06:22 file

|-

Read permission for others
Read and execute for group
Read, write and execute for user

%
LUND

UNIVERSITY

2020-02-02

18

18

2020-02-02

Controlled Invocation

« Some actions require elevated permission
— Example: Changing password requires root privileges
 Solved by an additional flag
« Allows caller to run program as owner
— Effective ID of process is ID of program owner (usually root)
— Users can get general root privileges without root password
 Adisadvantage is that this right cannot be given to specified users
— given to all or group

LUND

UNIVERSITY

19

19

2020-02-02

Setuid and Setgid (programs)

« Effective ID of process is ID of program owner (usually root)
— Here is the situation when RUID # EUID (real user ID vs. effective user ID)

» Used to temporarily change access rights
 xis replaced by s

alice@home:>1ls -1

totalt_16

-rpxy t-x 1 root root 6378 2020-01-12 15:16 prog_setgid

-r -x 1 root root 6378 2020-01-12 14:58 prog_setuid

alice@home:>./prog_setgid &

[1] 12189

alice@home:>./prog_setuid &

[2] 12190

alice@home:>ps -C prog_setgid,prog_setuid -o pid,ruser,euser,rgroup,egroup,args
PID RUSER EUSER RGROUP EGROUP COMMAND

12189 alice alice Students root ./prog_setgid

12190 alice root Students Students ./prog_setuid

LUND

UNIVERSITY

20

20

Setuid and Setgid (directories)

2020-02-02

« Setuid on directory usually ignored
« Setgid on directory causes new files to get the same group as directory

alice@home:>1ls -1

totalt 0

drwx - 2 alic
alice@home:>cd 4

totalt 0

-rw-r----- 1 alicd

Without setgid, file would get the group which is current group 1D
for user (set by newgrp or defaults to primary group).

Allows users to share files more easily

%
LUND

UNIVERSITY

21

21

2020-02-02

Important SUID Programs

* /usr/bin/passwd change password
* /usr/bin/at batch job submission
* /bin/su change UID program

alice@home:>1ls -1 /usr/bin/passwd /bin/su /usr/bin/at
-rwsr-xr-x 1 root root 31668 2019-04-23 08:48 /bin/su
-rwsr-xr-x 1 root trusted 43940 2019-05-02 09:47 /usr/bin/at
-rwsr-xr-x 1 root shadow 72836 2019-05-02 10:50 /usr/bin/passwd

setuid and setgid:
chmod u+s file Or chmod 4XXX file
chmod g+s file Or chmod 2XXX file

LUND

UNIVERSITY

22

22

2020-02-02

Sticky Bit

« Historically used to keep program code in memory when exiting program
— still the case in e.g., NetBSD

» Now used to only let owner delete file

— directory owner and superuser can also delete it

bobRhome:>1s -la

totalt O

drwxrwx 2 alice Students 72 2020-02-03 06:52 .
drwxr-x--- 3 alice Students 80 2020-02-03 06:50 ..
-rw-rw-r-- 1 alice Students 0 2020-02-03 06:52 file
bobRhome:>rm file

rm: kan inte ta bort ”“file”: Operationen inte tillaten
bobRhome:>1s -la

totalt 0

drwxrwxr(:)Z alice Students 72 2020-02-03 06:52 .
drwxr-x--= 3 alice Students 80 2020-02-03 06:50 ..
-rw-rw-r-- 1 alice Students 0 2020-02-03 06:52 file
bobRhome:>rm file

bobRhome:>_

LUND
 Typical example: the directory /tmp has sticky bit set UnIveRsITY

23

23

2020-02-02

Change Owner and Group (chown and chgrp)

chown is used to change the owner of a file (or directory)
* chgrp is used to change the group of a file (or directory)
— chown can set group also
Possible problem: A user creates a suid program and owner gets changed to root
Common solution:
— Only root can change owner and setuid and setgid bits are removed when owner is changed

— Anyone can change group to a group they are member of, but setuid and setgid bits are
removed when group is changed

Other solutions possible
— Let only root use chown, but preserve setuid and setgid bits
— Let any user change owner on his/her own files, but remove setuid and setgid bits

LUND
UNIVERSITY

24

24

Unix Security on the Man-Machine Scale

2020-02-02

 Lack of "flexibility” puts it more to the machine end of the scale
« Limited to read, write and execute

— E.g., ”shutdown computer” does not exist but may exist in more user-
focused environments

— Can still be implemented though, using the basic access rights

specific generic
complex simple
focus on users focus on data
C: \ ¢ =©
man Windows machine
oriented oriented

& 5
LUND
UNIVERSITY

25

25

2020-02-02

Example: Shutdown in Unix/Linux

Shutdown can be done with
— /sbin/shutdown
— /sbin/halt
— /sbin/reboot
— /sbin/poweroff

Only root can use these
Problem: Need to allow some users to shutdown

« Solution (one of several):
— Add group ”shutdown” in /etec/group
— Add users to this group
shutdown:x:1500:alice,bob
— Use chown or chgrp to change group of /sbin/shutdown
chown root:shutdown /sbin/shutdownor chgrp shutdown /sbin/shutdown
— Allow group shutdown to execute and set SUID bit since only root is allowed to execute this

command
chmod u+s,g+x /sbin/shutdown

LUND
UNIVERSITY

26

26

The inode

2020-02-02

+ Stores file information
« Directory contains filename and inode number

alice@home:>1ls -i
133143 filel 133144 file2 133145 file3 133143 file4d

h

* inode contains e.g.:
— Access rights Note that filel and file4
— Owner (UID) point to the same inode
— Group (GID)
— Time of latest access, modification and change
— Size of file
— Pointers to block of data

LUND

UNIVERSITY

27

27

Inode Information (stat)

2020-02-02

« Some information about an inode can be found using stat

Size in bytes Inode number

File
Size

Device:
Access:
Access:
Modify:
Change:
alicelhome:>

alicelhome:>stat fite
: "file”
: 102 Blocks: 8 IO Block: 4096 normal fil

802h/2050d Inode: 133060 Links: 1
(0644/-rw-r—r--) Uid: (1004/ alice) Gid: (1000/Students)

2-03 06:55:50.000000000 +0100<——_________________
Last access

03 06:12:00.000000000 +0100

06:55:59.000000000 +0100::\\\\\\\\

. Access rights \ Last

given to this file modification of
Last file
modification of
inode

LUND

UNIVERSITY

28

28

Default Access Rights (umask)

2020-02-02

Control default permissions, stored in /etc/profile
Override in ~/ .profile Or in prompt
umask tells which permissions to exclude by default
Access = full access AND NOT (umask)

— Full access for programs and directories: 0777

— Full access for files: 0666

alice@home:>umask 0027; mkdir directory; touch file; 1ls -1

totalt O
drwxr-x--- 2 alice Students 48 2020-02-03 06:54 directory
-rw-r----- 1 alice Students 0 2020-02-03 06:54 file

ey
&UND

29

29

2020-02-02

Protection of devices

Devices are treated as files

Example: If you can read/write physical memory all access control is overruled!
/dev/mem is the physical memory

/dev/kmem is the virtual memory

%
LUND

UNIVERSITY

30

30

2020-02-02

Copy files

Files can be copied in two ways
* cp src dest
— Creates a new inode and new physical file owned by user running cp

1n target linkname
— Creates filename and pointer to target’s inode. No new file is created.

— When one filename is deleted the other is still there and the file is not deleted

— rm subtracts the number of links in the inode by 1. If it becomes zero the corresponding
data block is freed

ln -s target linkname
— Creates a symbolic link, not a real link
— When opening symbolic link for reading or writing link is automatically dereferenced; |
— If file is deleted, the symbolic link remains, pointing to nothing :

LUND
UNIVERSITY

31

31

2020-02-02

Race conditions

» Assume process “’proc” with effective user ID = 0 writes to files in /tmp directory

— Process creates, e.g., /tmp/£ile and writes temporary data to this file
(Proc. opens file for writing and new file is created if it does not exist)

» What if malicious user creates /tmp/£ile as symbolic link to /etc/passwd?
— The file /etc/passwd will be overwritten since ’proc” has write access to this file
— System is damaged

 Race condition: Who creates the file first?

LUND

UNIVERSITY

32

32

Solutions To This Race Condition

2020-02-02

« Create files with unpredictable filenames in /tmp

— Still, attacker can try thousands of
filenames and will succeed with
probability > 0

 Use O_EXCL flag when opening file
— Then open fails if file already exists

Function mkstemp ()
will do this

» Check if file was opened through a symbolic link

> Can be done with 1stat ()

» All of the above should be used

%
LUND

UNIVERSITY

33

33

2020-02-02

Mounting File Systems

Mounting a file system =
making the particular file system accessible at a specific place in the Linux directory tree

Different physical devices put under a single root “/”
The mounted file system may contain unwelcome programs
Options:
— nosuid — turn off SUID and SGID bits
— noexec — NO binaries can be executed
— nodev — N0 devices can be accessed
— ro —read-only
UIDs and GIDs are local identifiers that may be interpreted differently on different Unix
systems

— Use global/universally unique identifiers

LUND
UNIVERSITY

34

34

2020-02-02

Search Path

» When executing programs, system needs to know where to look for them —
— PATH tells system where to look

* PATH=. : SHOME/bin: /usr/bin:/bin
— Programs can be located in current directory + 3 bin directories
— Trojan horse

 Can be a bad idea to put your current directory in the search path
(especially for programs executed by root)

— At least, put . last
— PATH=$HOME/bin:/usr/bin:/bin:.
« Alternatively, call program by its full name

LUND

UNIVERSITY

35

35

2020-02-02

TCP Wrapper

» inetd is a super-server deamon (starts other servers)

» Config file inetd. conf maps port numbers to programs
ftp stream tcp nowait root /usr/sbin/in. ftpd in. ftpd
telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd

 Put intermediate program with access control and logging
ftp stream tcp nowait root /usr/sbin/tcpd in. ftpd
telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd

* The TCP wrapper (tcpd) will have process name (in. ftpd and in. telnetd) and thus know where to
go after security checks are done

 tcpd provides generic network services:
— Logging (through syslog)
— Access Control
— Host Name Verification (client host name spoofing protection)

LUND

UNIVERSITY

36

36

Network Access Control

2020-02-02

- /etc/hosts.allow: (deamon, client) pair that is allowed access
- /etc/hosts.deny: (deamon, client) pair that is denied access

Example:

file;: /etc/hosts.allow

file: /etc/hosts.deny

ALL : localhost
ALL : 192.168.1.2
sshd : ALL EXCEPT .somedomain.com

ALL : ALL

Priority:

1. Check hosts.allow
2. Check hosts.deny
3. Allow access

Compare with allow/deny
in Windows!

LUND

UNIVERSITY

37

37

2020-02-02

[LUND

UNIVERSITY

38

